Selection Guide 166
PS6R Standard Series 167 7
Part Numbers 167
Specifications 168
Dimensions 170
PS5R－V Series 174
Part Numbers 174
Specifications 175
Dimensions 178
PS5R Slim Line Series 182
Part Numbers 183
Specifications 184
Dimensions and Terminal Markings 186
PS5R Standard Series 188
Part Numbers 188
Specifications 189
Dimensions 192
PS3X Series 193
Part Numbers 193
Specifications 194
Dimensions 196
Safety Precautions 198

Automation \＆Sensing

Automation \＆Sensing

Power Supplies

IDEC

Power Supplies

Selection Guide

Series		PS6R	PS5R-V	PS5R Slim Line	PS5R	PS3X	PS3L
Appearance							
Page		167	174	182	188	193	Visit www.IDEC.com/ powersupply
Housing		Metal	Plastic			Metal	Metal
Mounting		DIN Rail	DIN Rail or surface mount; 6 direction	DIN Rail or surface mount		Direct or DIN Rail mount	Panel or bracket mount
Wattage Range		120 W to 480W	7.5W to 240 W	10W to 240W	7.5W to 480W	15W to 100W	10W to 300W
Input Voltage		$\begin{aligned} & 100 \text { to } 240 \mathrm{~V} \mathrm{A,} \\ & 110 \text { to } 350 \mathrm{~V} \text { DC } \end{aligned}$	85 to 264V AC, 100 to 370 V DC	85 to 264 V AC, $100-370$ V DC $(100-350 \mathrm{~V}$ DC, 120W \& 240W)	85 to 264V AC, 105 to 370 V DC	$\begin{aligned} & 85 \text { to } 264 \mathrm{~V} \text { AC, } \\ & 120 \text { to } 375 \mathrm{~V} \text { DC } \end{aligned}$	85 to 264V AC, 105 to 370 V DC
Output Current Ratings	5V DC	2 A	1.5A, 2.0A	2.0A	1.5A, 2.5A	3A, 5A, 12A, 16A	2A, 3A, 6A
	12V DC	1A	0.6A, 1.3A, 2.5A	1.2A, 2.5A	0.6A, 1.2A, 2.5A	1.3A, 2.1A, 4.2A, 6A, 8.5A	$\begin{aligned} & 0.90 \mathrm{~A}, 1.4 \mathrm{~A}, 2.5 \mathrm{~A}, 4.3 \mathrm{~A} \\ & 8.5 \mathrm{~A}, 13 \mathrm{~A} \end{aligned}$
	24VDC	5A, 10A, 20A	$\begin{aligned} & 0.3 \mathrm{~A}, 0.65 \mathrm{~A}, 1.3 \mathrm{~A}, \\ & 2.5 \mathrm{~A}, 3.75 \mathrm{~A}, 5.0 \mathrm{~A}, \\ & 10.0 \mathrm{~A} \end{aligned}$	$0.65 \mathrm{~A}, 1.3 \mathrm{~A}, 2.5 \mathrm{~A}, 3.75 \mathrm{~A}$, 5A, 10A	$0.30 \mathrm{~A}, 0.60 \mathrm{~A}, 1.3 \mathrm{~A}, 2.1 \mathrm{~A}$, 3.1A, 4.2A, 5A, 10A, 20A	$\begin{aligned} & 0.63 \mathrm{~A}, 1.1 \mathrm{~A}, 2.2 \mathrm{~A}, 3.2 \mathrm{~A}, \\ & 4.5 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 0.50 \mathrm{~A}, 0.70 \mathrm{~A}, 1.3 \mathrm{~A} \\ & 2.2 \mathrm{~A}, 4.5 \mathrm{~A}, 6.5 \mathrm{~A}, 12.5 \mathrm{~A} \end{aligned}$
Typical Efficiency	5 V DC	up to 93\%	up to 77\%	69\%	69\%	77\%	70-75\%
	12V DC		up to 85%	75\%, 78\%	73\% to 75\%	81\% to 82\%	74\% to 80\%
	24V DC		up to 90\%	80\% to 84\%	75\% to 91\%	82% to 84%	78\% to 82\%
Voltage Adjustments		+/-10\%	$\begin{aligned} & +/-10 \% \text { (+/- } 5 \% \text { for } \\ & 90 W) \end{aligned}$	+/-10\% (V.ADJ control on front)			
Ripple Voltage		1.5\%peak to peak max (including noise)	-	2\% peak to peak max (including noise)		-	160 mV maximum
Overvoltage Protection (input)		120\%	-	120\% or more, auto reset	120\% typical	115\% typical	120\% typical
Overcurrent Protection (output)		105 to 120% (auto reset)	105\% minimum (101\% for $90 W$), auto reset	105\% min shutdown	105\% minimum (Zener or auto reset)		
Operating Temperature		$\begin{gathered} -10^{\circ} \text { to }+70^{\circ} \mathrm{C}\left(14^{\circ}\right. \text { to } \\ \left.140^{\circ} \mathrm{F}\right) \end{gathered}$	$-25^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	-10° to $+70^{\circ} \mathrm{C}\left(14^{\circ}\right.$ to $\left.140^{\circ} \mathrm{F}\right)$		-10° to $+85^{\circ} \mathrm{C}$	$\begin{gathered} -10^{\circ} \text { to }+60^{\circ} \mathrm{C}\left(14^{\circ}\right. \text { to } \\ \left.140^{\circ} \mathrm{F}\right) \end{gathered}$
Termination		M3.5 phillip/slotted, spring loaded, captive (fingersafe)				M3 or M3.5	IEC Style screw terminals (fingersafe)
Approvals			ANSI//SA-12.12.01-2011 Listed File $\begin{gathered}\text { Fe234997 }\end{gathered}$	ANSI//SA-12.12.01-2011 Listed File$* 234997$	Cile \#E177168		UL508 Listed File \#E177168 TUV

Power Supplies

PS6R Series Switching Power Supplies

Expandable and space-saving switching power supplies. High efficiency reduces operation costs.

- 93\% efficiency
- Plug-in output modules for additional output voltages
- Plug-in branch terminal module for additional terminals
- Power Range: $120 \mathrm{~W}, 240 \mathrm{~W}, 480 \mathrm{~W}$
- Input voltage: 100 to 240V AC (voltage range: 85 to 264 V AC/110 to 350 V DC)
- Up to $70^{\circ} \mathrm{C}\left(158^{\circ} \mathrm{F}\right)$ operating temperature
- DC Iow LED indicator and output contact
- The terminals are captive spring-up screws. Ring or fork terminals can be used.
- Finger-safe construction prevents electric shocks.
- Panel mount bracket and side-mount panel mounting bracket. Can be attached to a DIN rail or directly to a panel surface.
- RoHS compliant
- UL listed for Class 1, Division 2 Hazardous Locations
- Meets SEMI F47 Sag Immunity
- ABS Certified for maritime use

Part Numbers

PS6R

Output Capacity*	Part No.	Input Voltage	Output Voltage	Output Current
120W	PS6R-F24			5 S
240W	PS6R-G24	85 to 264V AC	21.6 to 26.4V	10A
480W	PS6R-J24			20A

*Output voltage \times output current $=$ output capacity

Accessories

Item	Part No.	Note
Output Voltage Expansion Module Note 1	PS9Z-6RM1	Output: $+5 \mathrm{~V}, 2 \mathrm{~A}, 10 \mathrm{~W}$
	PS9Z-6RM2	Output: +12V, 1A, 12W
	PS9Z-6RM3	Output: +5V, 1A/-5V, 1A, 10W
	PS9Z-6RM4	Output: +15V, 0.4A/-15V, 0.4A, 12W
	PS9Z-6RM5	Output: $+5 \mathrm{~V}, 1 \mathrm{~A} /+12 \mathrm{~V}, 0.5 \mathrm{~A}, 11 \mathrm{~W}$
	PS9Z-6RM6	Output: +12V, 0.5A/-12V, 0.5A, 12W
Branch Terminal Module Note 2	PS9Z-6RS1	Additional screw terminals for wiring: 2 + terminals / 2 - terminals
Panel Mounting Bracket	PS9Z-6R1F	
Side-mount Panel Mounting Bracket	PS9Z-6R2F	Supplied with M3 $\times 6$ countersunk mounting screws
DIN Rail	BNDN1000	1,000mm
DIN Rail End Clip	BNL6	

1. When using an output voltage expansion module, reduce 1 A from the output current of PS6R.
2. When using a branch terminal module, the total voltage/current of PS6R and the branch terminal module should not exceed the rated current/voltage of PS6R

Specifications

Easily Expandable

Output Voltage

 Expansion Module In addition to the standard 24 V output, additional 5,12 , and 15 V outputs can be added.

Branch Terminal Module Two terminals can be added. No wiring is required, reducing installation space.

Accessories (For use with PS6R)

Part No.			Output Voltage Expansion Module						Branch Terminal Module
			PS9Z-6RM1	PS9Z-6RM2	PS9Z-6RM3	PS9Z-6RM4	PS9Z-6RM5	PS9Z-6RM6	PS9Z-6RS1
Input Voltage			24V DC						
Output Capacity			10W max.	12W max.	10W max.	12W max.	11W max.	12W max.	-
Output	Rated Voltage/Current		5V/2A	12V/1A	$\pm 5 \mathrm{~V} 2 \mathrm{~A}$	$\pm 15 \mathrm{~V} 0.4 \mathrm{~A}$	$\begin{gathered} 5 \mathrm{~V} / 1 \mathrm{~A}, \\ 12 \mathrm{~V} / 0.5 \mathrm{~A} \end{gathered}$	$\pm 12 \mathrm{~V} 0.5 \mathrm{~A}$	24V/10A max. ${ }^{\text {Note } 1}$
	Adjustable Voltage Range		Not available						
	Voltage Accuracy		$\pm 5 \%$ max.						-
	Start Time		200 ms max . (at rated input and output)						-
		Input Fluctuation	0.5\% max.						-
		Load Fluctuation	1.0\% max.						
		Temperature Change	0.05\%/max. (-10 to $\left.+60^{\circ} \mathrm{C}\right)$						
		Ripple (including noise)	100mV max.		max.	100m	ax., 150mV m		
Supplementary Functions	Overcurrent Protection		105\% (auto reset)						
	Overvoltage Protection		Output off at 120\%						
Operating Temperature			-10 to $+70^{\circ} \mathrm{C}$ (no freezing) ${ }^{\text {Note } 2}$						
Operating Humidity			20 to 90\%RH (no condensation)						
Storage Temperature			-25 to $+75^{\circ} \mathrm{C}$ (no freezing)						
Storage Humidity			20 to 90\% RH (no condensation)						
Vibration Resistance			10 to 55 Hz , amplitude 0.375 mm , 2 hours each in 3 axes, 6 directions (in combination with PS6R-J24)						
Shock Resistance			$300 \mathrm{~m} / \mathrm{s}^{2}\left(150 \mathrm{~m} / \mathrm{s}^{2}\right.$ when using a PS9Z-6R1F panel mounting bracket), 3 shocks each in 6 axes (in combination with PS6R-J24)						
EMC		EMI	EN61204-3 (Class B) (in combination with PS6R-口24)						-
		EMS	EN61204-3 (industrial) (in combination with PS6R-ם24)						
Safety Standards			UL508 (Listing), CSA C22.2 No.107.1, IEC/EN60950-1, EN50178 (in combination with PS6R-口24)						
Degree of Protection			IP20 (IEC 60529)						
Weight (approx.)			90g						30 g
Terminal Screw			M3.5 (See last page for wire sizes.)						

1. Ensure that the current does not exceed the rated current of the PS6R.
2. See the output derating curves.

Wide Operating Termperature Range

Energy-saving 93\% Efficiency (480W)

Easy Maintenance - LED Indicator

Status	Normal	Overload or Input Voltage Low	Output short-circuit	Output OFF
DC ON (green LED)				-
DC Low (amber LED)				

*The LEDs turn on when the input voltage drops.

Dimensions (mm)

PS9Z-6R2F (Side-mount Panel Mounting Bracket)

When a PS9Z-6R2F is installed on PS6R

When using a PS9Z-6RS1

Branch Terminal Module

When using a PS9Z-6RM*
Output Voltage Expansion Module

Dimension Table

Dimension able					
	A	B	C	D	E
PS6R-F24	-	39.3	29.5	29.5	58
PS6R-G24	10.5	62.3	29.5	31	81
PS6R-J24	23	87.3	29.5	31	106

Operating Instructions

The PS6R should be placed in a proper enclosure. It is designed to be used with general electrical equipment and industrial electric devices

Operation Notes

1. Output interruption may indicate blown fuses. Contact IDEC.
2. The PS6R contains an internal fuse for AC input. When using DC input, install an external fuse or DC input. To avoid blown fuses, select a fuse in consideration of the rated current of the internal fuse.

Rated Current of Internal Fuses

Part No.	Internal Fuse Rated Current
PS6R-F24	4 A
PS6R-G24	6.3 A
PS6R-J24	10 A

- Avoid overload and short-circuit for a long period of time, otherwise internal elements may be damaged.
- DC input operation is not subjected to safety standards.

Installation Notes

- The PS6R can be installed in the direction shown below only.

- Do not close the top and bottom openings of the PS6R to allow for heat radiation by convection.
- Maintain a minimum of 20 mm clearance around the PS6R, except for the top and bottom openings.
- When derating of the output does not work, provide forced air-cooling.
- Make sure to wire the ground terminal correctly.
- For wiring, use wires with heat resistance of $60^{\circ} \mathrm{C}$ or higher.

Use copper wire of the following sizes. Wires of the following sizes must be used to comply with UL508, CSA C22.2 No. 107.1.

Model	Terminal	Wire Size/No. of Wire	Wire Type	Torque, in-ibs (N•m)
PS6R-F24 PS6R-G24	Input	18-14 AWG, 1-wire	Copper Solid/Stranded	7.0 (0.8)
	Output	18-14 AWG, 1-wire, (18 AWG - 7A, 16 AWG - 10A, 14 AWG - 15A)		
	DC OK Output	22-14 AWG, 1-wire (stripped wire length: 6 to 7 mm)		
PS6R-J24	Input	18-14 AWG, 1-wire		
	Output	18-14 AWG, 2-wire Use the same size wire for each terminal (18 AWG - 7A, 16 AWG - 10A, 14 AWG - 15A)		
		12 AWG, 1-wire	Copper Solid/Stranded Use with UL-listed ring/ fork crimp terminal.	
	$\begin{aligned} & \hline \text { DC OK } \\ & \text { Output } \end{aligned}$	22-14 AWG, 1-wire (stripped wire length: 6 to 7 mm)	Copper Solid/Stranded	-
PS9Z-6R \square	Output	18-14 AWG, 1-wire (18 AWG - 7A, 16 AWG -10A, 14 AWG - 15A)		7.0 (0.8)

Applicable Crimp Terøpifininfreference)

- Recommended tightening torque of the input and output terminals is $0.8 \mathrm{~N} \cdot \mathrm{~m}$.
- The output voltage can be adjusted within $\pm 10 \%$ of the rated output voltage by using the V.ADJ control. Note that overvoltage protection may work when increasing the output voltage.
- When large shocks or heavy vibrations on the PS6R are expected, the use of DIN rail or PS9Z-6R2F side-mount panel mounting bracket is recommended.

Series Operation
The following series operation is allowed. Connect Schottky barrier diodes as shown below. Output voltage expansion modules cannot be connected in series.

(a)
(b)

Select a Schottky diode in consideration of the rated current. The diode's reverse voltage must be higher than the PS6R's output voltage.
Parallel Operation
Parallel operation is possible to increase the output capacity. Output voltage expansion modules cannot be connected in series.

When increasing the capacity, observe the following.

1. Maintain the operating temperature below $40^{\circ} \mathrm{C}$.
2. Output cannot be connected directly in parallel operation. Connect a diode to the output of each PS6R.
3. Output terminal voltage of both power supplies must be the same. Also, maintain the voltage difference between the power supplies below 30 mV .
4. Use load lines of the same diameter and length.
5. Set the output voltage higher for the amount of diode forward voltage drop.
6. Turn on the inputs at the same time.
7. Select a diode in consideration of:

Diode's reverse voltage must be higher than the PS6R's output voltage. Diode's current must be three times the PS6R's output current. Provide a heat sink for heat dissipation.

PS6R-J24

PS6R-6RM1/M2/M3
Output Voltage Expansion Module

PS6R-ロ24/PS9Z-6RS1

		PS6R-■24/PS9Z-6RS1 (PS6R-6RM5 shown)
Marking	Name	Description
L, N	Input Terminal	Voltage range: 85 to 264V AC/110 to 350V DC
\dagger	Ground Terminal	Be sure to connect this terminal to a proper ground.
+V, -V	DC Output Terminals	+V : Positive output terminal -V: Negative output terminal
VR.ADJ	Output Voltage Adjustment	Allows adjustment within $\pm 10 \%$. Turning clockwise increases the output voltage.
DC ON	Operation Indicator (green)	Lights on when the output voltage is on.
DC LOW	Output Low Indicator (Amber)	Lights on when the output voltage drops approximately 80% of the rated value.
DC OK	DC OK Output	Lights on when the output voltage is more than 80% of the rated value. NPN transistor output (50V DC max., 50 mA max.)

PS9Z-6RM Marking	Name	Description
$+5 \mathrm{~V},+12 \mathrm{~V},+15 \mathrm{~V}$	DC Output Terminal	+5 V side, +12 V side, +15 V side
$-5 \mathrm{~V},-12 \mathrm{~V},-15 \mathrm{~V}$	DC Output Terminal	-5 V side, -12 V side, -15 V side
COM	DC Output Terminal	OV side (wired internally to -V of PR6R-J24)

Characteristics

> Operating Temperature vs. Output Current (Derating Curves)

PS9Z-6RM3/M4/M6
Output Voltage Expansion Module

(PS6R-6RM5 shown)

PS6R-6RS1
Branch Terminal Module

Operating Temperature approved by Safety Standards

Part No.	UL508, CSA C22.2 No. 107. 1	EN60950-1, EN50178
PS6R-F24	$60^{\circ} \mathrm{C}$	$60^{\circ} \mathrm{C}$
PS6R-G24	$60^{\circ} \mathrm{C}$	$60^{\circ} \mathrm{C}$
PS6R-J24	$55^{\circ} \mathrm{C}$	$60^{\circ} \mathrm{C}$
PS9Z-6R $\square \square$	$55^{\circ} \mathrm{C}$	$60^{\circ} \mathrm{C}$

Parts Description

PS6R-J24

PS6R-6RM1/M2/M3
Output Voltage Expansion Module

PS9Z-6RM3/M4/M6
Output Voltage Expansion Module

PS6R-6RS1

Branch Terminal Module

PS9Z-6RM Marking	Name	Description
$+5 \mathrm{~V},+12 \mathrm{~V},+15 \mathrm{~V}$	DC Output Terminal	+5 V side, +12 V side, +15 V side
$-5 \mathrm{~V},-12 \mathrm{~V},-15 \mathrm{~V}$	DC Output Terminal	-5 V side, -12 V side, -15 V side
COM	DC Output Terminal	OV side (wired internally to -V of PR6R-J24)

Characteristics

Operating Temperature approved by Safety Standards

Part No.	UL508, CSA C22.2 No. 107. 1	EN60950-1, EN50178
PS6R-F24	$60^{\circ} \mathrm{C}$	$60^{\circ} \mathrm{C}$
PS6R-G24	$60^{\circ} \mathrm{C}$	$60^{\circ} \mathrm{C}$
PS6R-J24	$55^{\circ} \mathrm{C}$	$60^{\circ} \mathrm{C}$
PS9Z-6Rロם	$55^{\circ} \mathrm{C}$	$60^{\circ} \mathrm{C}$

Overcurrent Protection Characteristics PS6R-■24 Overcurrent Protection Characteristics PS9Z-6RM*

Standards Compliance

Note 1: PS5R-VA/VB/VC/VD/VE only
Note 2: EN60950-1, EN50178 only
Part Numbers

Output Capacity	Part Number	Input Voltage	Output Voltage	Output Current
7.5W	PS5R-VA05	$\begin{aligned} & 100 \text { to } 240 \mathrm{~V} \text { AC } \\ & \text { (Voltage range: } 85 \text { to } 264 \mathrm{~V} \mathrm{AC} \mathrm{/} \\ & 100 \text { to } 370 \mathrm{~V} \text { DC) } \end{aligned}$	5 V	1.5A
	PS5R-VA12		12 V	0.6A
	PS5R-VA24		24V	0.3A
10W	PS5R-VB05		5 V	2.0A
15W	PS5R-VB12		12 V	1.3A
	PS5R-VB24		24 V	0.65A
30W	PS5R-VC12		12V	2.5A
	PS5R-VC24		24 V	1.3A
60W	PS5R-VD24		24 V	2.5 A
90W	PS5R-VE24		24 V	3.75 A
120W	PS5R-VF24		24 V	5.0A
240W	PS5R-VG24		24 V	10.0A

Part Number Structure
PS5R - V $\frac{\square}{\square} \frac{\square}{\square}$ Output Capacity - Output Voltage
A: 7.5W
05: $5 \mathrm{~V}^{3}$
B: $10 \mathrm{~W} / 15 \mathrm{~W}$
12: $12 \mathrm{~V}^{4}$
C: 30 W
24: 24V
D: 60W
E: 90W
F: 120 W
Note 3: PS5R-VA/VB only
G: 240 W
Note 4 : PS5R-VA/VB only
Not
Use only for interpreting part numbers.
Do not use for developing part numbers.

Model				PS5R-VA05	PS5R-VB05	-	-	-	-	-
			12V DC output	PS5R-VA12	PS5R-VB12	PS5R-VC12	-	-	-	-
			DC output	PS5R-VA24	PS5R-VB24	PS5R-VC24	PS5R-VD24	PS5R-VE24	PS5R-VF24	PS5R-VG24
Output Capacity				7.5W	15 W (5V Model is 10W)	30W	60W	90W	120W	240W
Rated Input Voltage $\left(\right.$ Single-phase two-wire) ${ }^{1}$				100 to 240 V AC(Voltage range: 85 to 264 V AC/100 to 370 V DC) (Load $\leq 80 \%$ at $100-105 \mathrm{~V}$ DC)						
Frequency				$50 / 60 \mathrm{~Hz}$						
Input Current (Typ.)			100V AC	$5 \mathrm{~V}: 0.20 \mathrm{~A} 12 \mathrm{~V}, 24 \mathrm{~V}: 0.18 \mathrm{~A}$	$\begin{array}{cc} 5 \mathrm{~V}: & 0.25 \mathrm{~A} \\ 12 \mathrm{~V}, 24 \mathrm{~V}: & 0.35 \mathrm{~A} \end{array}$	0.7A	1.3A	1.1A	1.4 A	2.7 A
			230 V AC	$5 \mathrm{~V}: 0.12 \mathrm{~A} 12 \mathrm{~V}, 24 \mathrm{~V}: 0.10 \mathrm{~A}$	$\begin{array}{cc} 5 \mathrm{~V} & 0.14 \mathrm{~A} \\ 12 \mathrm{~V}, 24 \mathrm{~V}: & 0.19 \mathrm{~A} \end{array}$	0.3A	0.8A	0.6A	0.7A	1.2A
言	Inrush Current (Typ.) ($\mathrm{Ta}=25^{\circ} \mathrm{C}$, cold start)		100 V AC	15A	18A					14A
ㄷ			230V AC	36A	45A				41A	30A
	Leakage Current		120 V AC	0.5mA max.						
			230 V AC	1.0mA max.						
	Efficiency (Typ.) (at rated output) ${ }^{2}$		100 V AC	5V: $74 \%, 12 \mathrm{~V}: 79 \%, 24 \mathrm{~V}: 80 \%$	5V: $77 \%, 12 \mathrm{~V}: 82 \%, 24 \mathrm{~V}: 84 \%$	12V: $83 \%, 24 \mathrm{~V}: 85 \%$	86\%	$\begin{aligned} & \text { 88\% } \\ & \text { 89\% } \end{aligned}$		89\%
			230 V AC	5V: $73 \%, 12 \mathrm{~V}: 77 \%, 24 \mathrm{~V}: 76 \%$	5V: $73 \%, 12 \mathrm{~V}: 80 \%, 24 \mathrm{~V}: 81 \%$	12V: $85 \%, 24 \mathrm{~V}: 87 \%$	86\%			90\%
	Power Factor (Typ.)		100 V AC	-	-	-	-	0.99		
			230V AC	-	-	-	-	0.86	0.92	0.96
$\begin{aligned} & \text { ت} \\ & \text { ㅁ } \\ & \text { 5 } \end{aligned}$	Rated Voltage/Current			5V/1.5A, 12V/0.6A, 24V/0.3A	$5 \mathrm{~V} / 2.0 \mathrm{~A}^{3}, 12 \mathrm{~V} / 1.3 \mathrm{~A}, 24 \mathrm{~V} / 0.65 \mathrm{~A}$	12V/2.5A, 24V/1.3A	24V/2.5A	24V/3.75A	24V/5A	24V/10A
	Adjustable Voltage Range			$\pm 10 \%$				$\pm 5 \%$	$\pm 10 \%$	
	Output Holding Time (Typ.) (at rated output)		100V AC	45 ms	5V: $53 \mathrm{~ms}, 12 \mathrm{~V}: 34 \mathrm{~ms}, 24 \mathrm{~V}: 36 \mathrm{~ms}$	12V: $13 \mathrm{~ms}, 24 \mathrm{~V}: 15 \mathrm{~ms}$	13 ms	20 ms	30 ms	
			230V AC	285 ms	$5 \mathrm{~V}: 330 \mathrm{~ms} 12 \mathrm{~V}: 215 \mathrm{~ms}$ $24 \mathrm{~V}: 230 \mathrm{~ms}$	12V: 110 ms 24V: 110 ms	105ms	30 ms	33 ms	40 ms
	Start Time (at rated input and output)			500 ms max.	500 ms max.	600 ms max .	800 ms max .		700 ms max.	800ms max.
	Rise Time (at rated input and output)			5V, 12V: 200ms max 24V: 250ms max	5V, 12V: 200ms max. 24V: 250ms max.	200 ms max .				
	Input Fluctuation			0.4\% max.						
	Load Fluctuation			5V: 2.5% max. 12V, 24V: 1.0% max.		1.0\% max.				
	Temperature Change			$\begin{gathered} 0.04 \% /{ }^{\circ} \mathrm{C} \text { max. (}-10 \text { to } \\ +65^{\circ} \mathrm{C} \text {) } \end{gathered}$	$0.05 \% /{ }^{\circ} \mathrm{C}$ max. (-10 to $\left.+65^{\circ} \mathrm{C}\right)$	$\begin{aligned} & \text { 12V: } 0.05 \% /{ }^{\circ} \mathrm{C} \text { max. }\left(-10 \text { to }+50^{\circ} \mathrm{C}\right) \\ & \text { 24V: } 0.05 \% /{ }^{\circ} \mathrm{C} \text { max. }\left(-10 \text { to }+55^{\circ} \mathrm{C}\right) \end{aligned}$	$\begin{aligned} & 0.05 \% /{ }^{\circ} \mathrm{C} \text { max. } \\ & \left(-10 \text { to }+55^{\circ} \mathrm{C}\right) \end{aligned}$	$\begin{aligned} & 0.05 \% /{ }^{\circ} \mathrm{C} \text { max. } \\ & \left(-10 \text { to }+50^{\circ} \mathrm{C}\right) \end{aligned}$	$\begin{aligned} & 0.05 \% /{ }^{\circ} \mathrm{C} \text { max. } \\ & \left(-25 \text { to }+55^{\circ} \mathrm{C}\right) \end{aligned}$	$\begin{aligned} & 0.05 \% /{ }^{\circ} \mathrm{C} \text { max. } \\ & \left(-25 \text { to }+50^{\circ} \mathrm{C}\right) \end{aligned}$
	$\frac{\stackrel{\bar{O}}{ \pm}}{\frac{0}{\bar{T}}}$	Ripple (including noise)		$5 \mathrm{~V}: 8 \% \mathrm{p}-\mathrm{p}$ max. $\left(-25\right.$ to $\left.-10^{\circ} \mathrm{C}\right)$ 12V: 6\% p-p max. (-25 to $-10^{\circ} \mathrm{C}$) 24V: 4\% p-p max. (-25 to $-10^{\circ} \mathrm{C}$)	5V: 8% p-p max. $\left(-25\right.$ to $\left.-10^{\circ} \mathrm{C}\right)$ 12V: $6 \% \mathrm{p}$-p max. $\left(-25\right.$ to $\left.-10^{\circ} \mathrm{C}\right)$ 24V: 4\% p-p max. (-25 to $-10^{\circ} \mathrm{C}$)	12V: 6% p-p max. $\left(-25\right.$ to $\left.-10^{\circ} \mathrm{C}\right)$ 24V: $4 \% \mathrm{p}$-p max. $\left(-25\right.$ to $\left.-10^{\circ} \mathrm{C}\right)$	4% p-p max. (-25 to -10 ${ }^{\circ} \mathrm{C}$)			
				5V: 5\% p-p max. (-10 to $+0^{\circ} \mathrm{C}$) $12 \mathrm{~V}: 2.5 \%$ p-p max. $\left(-10\right.$ to $\left.+0^{\circ} \mathrm{C}\right)$ 24V: 1.5\% p-p max. (-10 to $+0^{\circ} \mathrm{C}$)	5V: 5% p-p max. (-10 to $+0^{\circ} \mathrm{C}$) 12V: 2.5% p-p max. $\left(-10\right.$ to $\left.+0^{\circ} \mathrm{C}\right)$ 24V: 1.5% p-p max. $\left(-10\right.$ to $\left.+0^{\circ} \mathrm{C}\right)$	12V: 2.5\% p-p max. $\left(-10\right.$ to $\left.+0^{\circ} \mathrm{C}\right)$ 24V: 1.5% p-p max. $\left(-10\right.$ to $\left.+0^{\circ} \mathrm{C}\right)$	1.5\% p-p max. (-10 to $\left.+0^{\circ} \mathrm{C}\right)$			
				5 V : 2.5% p-p max. $\left(0\right.$ to $\left.+65^{\circ} \mathrm{C}\right)$ 12V: 1.5\% p-p max. (0 to $+65^{\circ} \mathrm{C}$) 24V: 1\% p-p max. (0 to $+65^{\circ} \mathrm{C}$)	5 V : 2.5% p-p max. $\left(0\right.$ to $\left.+65^{\circ} \mathrm{C}\right)$ 12V: 1.5% p-p max. $\left(0\right.$ to $\left.+65^{\circ} \mathrm{C}\right)$ 24V: 1\% p-p max. (0 to $+65^{\circ} \mathrm{C}$)	12V: 1.5% p-p max. $\left(0\right.$ to $\left.+50^{\circ} \mathrm{C}\right)$ 24V: 1\% p-p max. (0 to $+55^{\circ} \mathrm{C}$)	$\begin{aligned} & 1 \% \text { p-p max. (} 0 \text { to } \\ & \left.+55^{\circ} \mathrm{C}\right) \end{aligned}$	$\begin{gathered} 1 \% \text { p-p max. }(0 \text { to } \\ \left.+50^{\circ} \mathrm{C}\right) \end{gathered}$	1\% p-p max. (0 to $+55^{\circ} \mathrm{C}$)	$\begin{aligned} & 1 \% \text { p-p max. (} 0 \text { to } \\ & \left.+50^{\circ} \mathrm{C}\right) \end{aligned}$
Overcurrent Protection				105\% min. (auto reset)				101\% min. (auto reset)	105\% min. (auto reset)	
Operation Indicator				LED (green)						
	Between input and output terminals			3,000V AC, 1 minute						
	Between input and ground terminals			2,000V AC, 1 minute						
	Between output and ground terminals			$500 \mathrm{~V} \mathrm{AC}$,1 minute						
Insulation Resistance				Between input and output terminals: $100 \mathrm{M} \Omega \mathrm{min}$. (500 V DC megger) Between input and ground terminals: $100 \mathrm{M} \Omega \mathrm{min}$. (500 V DC megger)						
Operating Temperature ${ }^{4}$ (No freezing)				-25 to $+75^{\circ} \mathrm{C}$		-25 to $+70^{\circ} \mathrm{C}$		-25 to $+65^{\circ} \mathrm{C}$		
Operating Humidity (no condensation)				20 to 90\% RH						
Storage Temperature (No freezing)				-25 to $+75^{\circ} \mathrm{C}$						
Storage Humidity (no condensation)				20 to 90\% RH						
Vibration Resistance				10 to 55 Hz , amplitude 0.375 mm , 2 hours each in 3 axes (when used with BNL6 end clips)			10 to 55 Hz , amplitude 0.33 mm , 2 hours each in 3 axes (when used with BNL6 end clips) 10 to 55 Hz , amplitude 0.375 mm , 2 hours each in 3 axes (when used with BNL8 end clips)		10 to 55 Hz , amplitude $0.21 \mathrm{~mm}, 2$ hours each in 3 axes (when used with BNL6 end clips) 10 to 55 Hz , amplitude $0.375 \mathrm{~mm}, 2$ hours each in 3 axes (when used with BNL8 end clips)	10 to 55 Hz , amplitude 0.375 mm , 2 hours each in 3 axes (when used with part no. BNL6 mounting clips)
Shock Resistance				$300 \mathrm{~m} / \mathrm{s}^{2}$ (30G), 3 times each in 6 directions						
Expected Life ${ }^{5}$				8 years minimum (at the rated input, 50% load, operating temperature $+40^{\circ} \mathrm{C}$, standard mounting direction)						
EMC		EMI		EN61204-3 (Class B)						
		EMS		EN61204-3 (industrial)						
Safety Standards				UL508 (Listing), UL1310 Class 2, ANSI/ISA-12.12.01 CSA C22.2 No. 107.1, 213, 223 EN60950-1, EN50178					ULL508 (Listing) ANSI/ISA-12.12.01CSA C22.2 No. 107.1, 213EN60950-1, EN50178	
Other Standard				SEMI F47 (at 208V AC input only)						
Degree of Protection				IP20 (EN60529)						
Dimensions (mm)				$75 \mathrm{H} \times 45 \mathrm{~W} \times 70 \mathrm{D}$	$90 \mathrm{H} \times 22.5 \mathrm{~W} \times 95 \mathrm{D}$		$95 \mathrm{H} \times 36 \mathrm{~W} \times 108 \mathrm{D}$		$115 \mathrm{H} \times 46 \mathrm{~W} \times 121 \mathrm{D}$	$125 \mathrm{H} \times 60 \mathrm{~W} \times 125 \mathrm{D}$
Weight (approx.)				130 g	140 g	150g	260 g	310 g	470 g	960 g
Terminal Screw				M3.5						

*At normal temperature and humidity unless otherwise specified.
Note 1: DC input voltage is not subject to safety standards. When using on DC input, connect a fuse to the input terminal for DC input protection.
ote 2: Under stable state
Note 3: PS5R-VB05 (5V DC/2.0A) is 10W (Up to 3.0A at $\mathrm{Ta}=0$ to $40^{\circ} \mathrm{C}$. Not subject to safety standards above 2.0A.)
Note 4: See the output derating curves.
Note 5: Calculation of the expected life is based on the actual life of the aluminum electrolytic capacitor. The expected life depends on operating conditions

Characteristics

Operating Temperature vs. Output Current (Derating Curves)

Conditions: Natural air cooling (Operating temperature is the temperature around the switching power supply.)

PS5R-VA05, -VA12, -VA24

PS5R-VF24

PS5R-VB05, -VB12, -VB24

PS5R-VD24

PS5R-VG24

Input Voltage vs. Output Current (Derating Curves) Ta=25 ${ }^{\circ} \mathrm{C}$ PS5R-VB05, -VB12, -VB24, -VC12, -VC24, -VD24, -VE24, -VF24

Overcurrent Protection Characteristics PS5R-VA/VB/VC/VD/VF

PS5R-VA05, -VA12, -VA24, -VG24

(acvico 105 Input voltage (V) $\quad 370$

PS5R-VE24

PS5R-VC12

PS5R-VE24

Operating Temperature $\left({ }^{\circ} \mathrm{C}\right)$

PS5R-VG24

Operating Temperature Approved by Safety Standards

Part Number	UL508, CSA C22.2 No.107.1, ANSI/ISA12.12.01, EN60950-1, EN50178					
	Mounting A	Mounting B	Mounting C	Mounting D	Mounting E	Mounting F
PS5R-VA05, -VA12, -VA24	65	60	60	60	65	60
PS5R-VB05, -VB12, -VB24	65	60	60	60	60	60
PS5R-VC12	50	45	45	45	45	45
PS5R-VC24	55	55	50	45	45	45
PS5R-VD24	55	40	40	40	45	35
PS5R-VE24	50	40	40	40	45	40
PS5R-VF24	55	40	45	40	45	35
PS5R-VG24	50	35	30	30	45	30

Mounting Style

Front Panel

Accessories

Panel Mounting Bracket ${ }^{2}$

Applicable Switching Power Supply	Part Number	Remarks
PS5R-VB	PS9Z-5R1B	-
PS5R-VC	PS9Z-5R2B	For side mounting
PS5R-VD	PS9Z-5R1C	-
PS5R-VE	PS9Z-5R1E	-
PS5R-VF	PS9Z-6R1F	-
PS5R-VG	PS9Z-6R2F	For side mounting

Note 2: Used when installing on a panel directly, PS5R-VA model does not require panel mounting bracket.

DIN Rail (35mm-wide)

1000 mm
BNDN1000

Aluminum

End Clip

Part Number
BNL6
BNL8

Dimensions (mm)

PS5R-VD/VE

PS5R-VG

PS5R-VB/VC

PS5R-VF

MTBF*

*MTBF stands for Mean Time Between Failure, which is calculated according to statistical device failures, and indicates reliability of a device. It is the statistical representation of the likelihood of the unit to fail and does not necessarily represent the expected life of a product.

Panel Mounting Bracket

PS9Z-5R1B

PS9Z-5R2B Side-mount

PS9Z-5R1C

PS9Z-5R1E

PS9Z-6R1F

PS9Z-6R2F Side-mount

When installed on switching power supply

Front View
Side View

Side View

Safety Precautions

The PS5R-V should be placed in a proper enclosure. It is designed to be used with general electrical equipment and industrial electric devices

- Do not use switching power supplies with electric equipment whose malfunction or inadvertent operation may damage the human body or life directly.
- Make sure that the input voltage and output current do not exceed the ratings. If the input voltage and output current exceed the ratings, electric shock, fire, or malfunction may occur.
- Do not touch the terminals of the switching power supply while input voltage is applied, otherwise electric shock may occur.
- Provide the final product with protection against malfunction or damage that may be caused by malfunction of the switching power supply.
- Operating temperatures should not exceed the ratings. Be sure to note the derating characteristics. If the operating temperature exceeds the ratings, electric shock, fire or malfunction may occur.
- Blown fuses indicate that the internal circuits are damaged. Contact IDEC for repair. Do not just replace the fuse and reoperate, otherwise electric shock, fire, or malfunction may occur.
- Do not use the switching power supplies to charge rechargeable batteries.
- Do not overload or short-circuit the switching power supply for a long period of time, otherwise the internal elements may be damaged.
- Do not disassemble, repair, or modify the power supplies, otherwise the high voltage internal part may cause electric shock, fire, or malfunction.
- The fuse inside the PS5R-V switching power supply is for AC input. Use an external fuse for DC input.

Operating Instructions

Notes for installation

- Do not close the top or bottom openings of the PS5R-V to allow for heat radiation by convection.
- When mounting multiple PS5R-V switching power supplies side by side, maintain a minimum of 10 mm clearance. Observe the derating curves in consideration of the ambient temperature.

- When the derating voltage may exceed the recommended value, provide forced air-cooling.
- Make sure to wire the ground terminal correctly.
- For wiring, use wires of heat resistance of $60^{\circ} \mathrm{C}$ or higher (PS5R-VB: $80^{\circ} \mathrm{C}$ or higher). Use copper wire of the following sizes, according to the rated current.

Terminal	Wire Size (allowable current)	Wire Type
Input	AWG 18 to 14	Copper Solid/Stranded
Output	AWG18 to 14 (AWG18: 7A, AWG16: 10A, AWG14: 15A)	

Cross-Sectional are AWG18: $0.82 \mathrm{~mm}^{2}$, AWG16: $1.31 \mathrm{~mm}^{2}$, AWG14: $2.0 \mathrm{~mm}^{2}$

Applicable crimp terminal (reference)

- Recommended tightening torque of the input and output terminals is 1.0 to 1.3 Nm ($0.8 \mathrm{~N} \cdot \mathrm{~m}$ for UL).

Mounting on DIN Rails

1. Use a 35 mm -wide DIN rail.
2. Place the PS5R-V on the DIN rail as shown with input terminal side up (1)), and press the PS5R-V towards the DIN rail (②). Make sure that the PS5R-V is installed firmly.
3. Use BNL6 end clips to ensure power supplies do not slide off the end of the DIN rail. Use of BNL8 end clips is recommended when excessive vibration or shock is anticipated.

Removal

- Insert a flat screwdriver into the slot in the clamp, and pull out until it clicks (1)). The lock mechanism is released and the PS5R-V can be removed (②). When mounting the PS5R-V again, push in the latch first.

Installing a Panel Mounting Bracket

Panel Mounting Bracket (PS9Z-5R1ロ, PS9Z-6R1F)

(1) Push in the latch to LOCK position.

(2) Install the tab on the panel mounting bracket into the slot on the power supply.
(3) Install the brackets as shown on the left.
(4) Ensure that the panel mounting bracket is locked by the latch.

Panel Mounting Bracket (PS9Z-5R2B)

(1) Pull out the latch to UNLOCK position.
$\xrightarrow[\square]{\square}$ LDOCK

(2) Insert the tab on the panel mounting bracket into the slot on the power supply.

(3) Push in the latch to LOCK position.
(4) Ensure that the panel mounting bracket is locked by the latch.

Installing PS9Z-6R2F Side-mount Panel Mounting Bracket

Install the bracket on the switching power supply using four $\mathrm{M} 3 \times 6$ countersunk screws supplied with the bracket. Recommended tightening torque is 0.5 to $0.6 \mathrm{~N} . \mathrm{m}$ (should be in the center positions)

Adjustment of Output Voltage

The output voltage can be adjusted within $\pm 10 \%$ (VE: $\pm 5 \%$) of the rated output voltage by using the VR.ADJ control on the front. Turning the VR.ADJ clockwise increases the output voltage. Turning the VR.ADJ counterclockwise decreases the output voltage.

Overcurrent Protection

The output voltage drops automatically when an overcurrent flows due to an overload or short circuit. Normal voltage is automatically restored when the load returns to normal conditions.

Insulation/Dielectric Test

When performing an insulation/dielectric test, short-circuit the input (between L and N) and output (between +V and -V). Do not apply or interrupt the voltage quickly, otherwise surge voltages may be generated and the PS5R-V may be damaged.

Notes for Operation

- Output interruption may indicate blown fuses. Contact IDEC.
- The PS5R-V switching power supply contains an internal fuse for AC input. When using DC input, install an external fuse. To avoid blown fuses, select a fuse in consideration of the rated current of the internal fuse.

Rated Current of Internal Fuses

Part Number	Internal FuseRated Current
PS5R-VB/VC	2 A
PS5R-VD/VE/VF	4 A
PS5R-VG	6.3 A

- Avoid overload and short-circuit for a long period of time, otherwise the internal elements may be damaged.
- DC input operation is not subject to safety standards.

Rust and Scratches on Metal parts

Bonded metal parts are used for the PS5R-V. Rust on the edge and scratches on the surfaces may be developed depending on the storage condition, but the performance of the PS5R-V is not affected.

Noise

Small acoustic noise inside the PS5R-V may be heard depending on the input voltage and load, but the performance of the PS5R-V is not affected.

Series Operation

Series operation is allowed. Connect Schottky barrier diodes D as shown below. Select a Schottky diode in consideration of the rated current. The diode's reverse voltage must be higher than the PS5R-V's output voltage.

Parallel Operation

Parallel operation is not possible to increase the output capacity, because the internal elements and load may be damaged.

Backup Operation

Backup operation is a connection method of two switching power supplies in parallel for emergency. Normally one switching power supply has a sufficient output. If one switching power supply fails, another one operates to continue the output. Make sure that the sum of power
consumption by load and diode is not greater than the rated wattage (rated voltage \times rated
current) of one switching power supply.

Select a diode in consideration of:
Diode's current must be more than double the PS5R-V's output current. Take heat dissipation into consideration.

Warranty

IDEC warranties the PS5R-V switching power supply for a period of five years from the date of shipment.

Scope

IDEC agrees to repair or replace the PS5R-V switching power supply if the product has been operated under the following conditions. The maximum value of output capacity is within the range shown in "Operating Temperature vs.
Output Current on page 3.

1. Average operating temperature (ambient temperature of switching power supply) is $40^{\circ} \mathrm{C}$ maximum.
2. The load is 80% maximum.
3. Input voltage is the rated input voltage.
4. Standard mounting style

IDEC shall not be liable for other damages including consequential, contingent or incidental
damages. Warranty does not apply if the PS5R-V switching power supply was subject to:

1. Inappropriate handling, or operation beyond specifications.
2. Modification or repair by other than IDEC.
3. Failure caused by other than the PS5R-V switching power supply.
4. Failure caused by natural disasters.

PS5R Slim Line Series

Switching Power Supplies

Key features:

- Lightweight and compact in size
- Wide power range: $10 \mathrm{~W}-240 \mathrm{~W}$
- Universal input: 10W to 90W: 85-264V AC/100-370V DC 120 W and $240 \mathrm{~W}: 85-264 \mathrm{~V}$ AC/100-350V DC
- Power Factor Correction for 60W to 240 W (EN61000-3-2)
- Meets SEMI F47 Sag Immunity (120W \& 240W only)
- UL Listed for Class 1, Div. 2 Hazardous Locations
- Overcurrent protection, auto-reset
- Overvoltage protection, shut down
- Spring-up screw terminal type, IP2o
- DIN rail or panel surface mount
- Approvals: CE Marked TÜV

ANSI/ISA-12.12.01-2011 (Hazardous locations) EN50178:1997

LVD: EN60950:2000
EMC: Directive EN61204-3:2000 (EMI: Class B, EMS: Industrial)

Designed with Accessibility \& Convenience in Mind

DC Low Indicator

 (15W, 120W \& 240W Slim Line Only)The indicator turns on when the output voltage drops below 80% of the rated value. This assists in troubleshooting power supply problems.

DC ON Indicator

The indicator turns on when the unit is powered up. This is a convenient way to know when the power supply is receiving power.

Output Voltage Adjustment

The output voltage can be easily adjusted within $\pm 10 \%$ of the rated voltage.

Fingersafe, Spring-up Screw Terminals

Terminals are captive spring-up screws, which makes using them as easy as pushing a screw down and tightening it.
They are shock and vibration resistant, and work with ring lugs, fork connectors or stripped wire connections. The terminals are rated IP20 (when tightened) meaning they are recessed to keep fingers and objects from touching the input contacts.

Universal Input Power

The applied input power has a range of $85-264 \mathrm{~V}$ AC ($100-350 \mathrm{~V}$ DC) without the use of jumpers or slide switches. This makes IDEC power supplies suitable for use anywhere in the world.

Long Life Expectancy

IDEC power supplies are very reliable, with a life expectancy of 70,000 hrs. (minimum) or longer, depending on usage. Power factor correction has also been included to minimize harmonic distortion, resulting in a longer operating life and increased reliability.

Output Channel

With very low output ripples of less than 1% peak to peak, the 120 W and 240 W power supplies are some of the best in the industry. The output comes with overload protection that avoids damaging the power supply and the spring-up, fingersafe, screw terminals add a level of safety and ease for the .user. The 240 W power supply also has the convenience of two output terminals.

Ventilation Grill

Provides cooling for the power supply and prevents small objects from falling into the power supply circuitry.

Part Numbers

Accessories

Panel Mounting Bracket for PS5R-SB	PS9Z-5R1B
Panel Mounting Bracket for PS5R-SB (flat side mounting)	PS9Z-5R2B
Panel Mounting Bracket for PS5R-SC and PS5R-SD	PS9Z-5R1C
Panel Mounting Bracket for PS5R-SE	PS9Z-5R1E
Panel Mounting Bracket for PS5R-SF \& PS5R-SG	PS9Z-5R1G
DIN rail (1000mm)	
DIN rail end clip	BNDN1000

Specifications

Temperature Derating Curves

All IDEC Slim Line power supplies are listed to UL508, which allows operation at 100% capacity inside a panel. This eliminates the need to use oversize power supplies or utilize two power supplies derated at 50% of their rated output.

The charts below show that the PS5R Slim 10 W (at $60^{\circ} \mathrm{C}$) and 15 W (at $60^{\circ} \mathrm{C}$), $30 \mathrm{~W} / 60 \mathrm{~W} / 90 \mathrm{~W}$ (at $55^{\circ} \mathrm{C}$), 120 W (at $40^{\circ} \mathrm{C}$), and 240 W (at $45^{\circ} \mathrm{C}$) meet the elevated, operating temperature required by UL508 and EN60950 standards to operate at an output current of 100%. The output current starts to derate beyond the required temperature.

PS5R-SB

Dearting curve for PS5R-SB varies depending on mounting method (see right).

PS5R-SC

PS5R-SG

PS5R-SD, -SE, -SF

PS5R-SE 90W/3.75A/24V DC versus a Leading Competitor
Standard derating curve (operating temperature vs. output current)

Don't Believe the Hype

Other companies use slick marketing to sell you 60W power supplies with a "BOOST," but what they don't tell you is that these are merely 90 W power supplies that have been renamed to fool you into thinking they have a unique feature. IDEC 90W power supplies are just what they claim, 90 W power supplies. The truth is IDEC led the market by incorporating UL508 DIN rail mount power supplies as a standard product. Don't let the other guys pull a fast one on you by claiming to provide features that just aren't true, or even possible. See what IDEC has to offer, no strings attached.

Overload Protection

PS5R-SF, -SG

Overcurrent Protection

When the output current exceeds 105% of the rated current, overload protection is triggered, and the output voltage starts decreasing. When the output current returns within the rated range, the overload protection function is automatically cleared.

Overvoltage Protection

SEMI-F47 Approved

The SEMI F47 (Semiconductor Processing Equipment Voltage Sag Immunity) defines the minimum voltage sag ride-through requirements for semiconductor processing, automated test equipment and other equipment. It requires that the equipment be able to tolerate voltage sags on an AC power line without interrupting operations. This avoids the loss of production and money.
The graph shows how the equipment must tolerate sags to 50% for 200 ms , sags to 70% for up to 0.5 seconds and sags to 80% for up to 1 second.

Overvoltage Protection

When the output voltage of the power supply rises to 120% or more of the rated value, the output will shut off. To restore power, only manual reset is available which is an advantage in troubleshooting.

Dimensions and Terminal Markings

PS5R-SC

PS5R-SD	
Height	95.0 mm
Width	36.0 mm
Depth	108.0 mm

PS5R-SG

Height	125.0 mm
Width	80.0 mm
Depth	149.5 mm

PS5R-SF	
Height	115.0 mm
Width	50.0 mm
Depth	129.0 mm

Front Panel (terminals)

Markings	Name	Description
V. ADJ	Voltage adjustment	Adjusts within $\pm 10 \%$; turn clockwise to increase output voltage.
DC ON	Operation indicator	Green LED is lit when output voltage is on.
DC Low	Output indicator	Amber LED is lit when output voltage drops below 80\% of rated voltage.
+V, -V	DC output terminals	+V: Positive output Terminal -V: Negative output terminal
T	Frame ground	Ground this terminal to reduce high-frequency noise caused by switching power supply.
L, N	Input terminals	Accept a wide range of voltages and frequencies (no polarity at DC input).

Mounting Bracket Dimensions (mm)

PS9Z-5R1B (for PS5R-SB)

PS9Z-5R2B (for PS5R-SB)

PS9Z-5R1C (for PS5R-SC \& PS5R-SD)

PS5R Standard Series Switching Power Supplies

Key features:

- Wide power range: $7.5 \mathrm{~W}-480 \mathrm{~W}$
- Universal input: 7.5W-50W: 85-264V AC/105-370V DC 100W: 85-132V AC/170-264V AC 240-370V DC (selectable) 75W, 120W, 240W: 85-264V AC/110-350V DC 480W: 3 phase: $320-575 \mathrm{~V}$ AC 3 phase: $360-575 \mathrm{~V}$ AC
- Overcurrent/overvoltage protection
- Power Factor Correction (75W, 120W, 240W models) EN61000-3-3
EN61000-3-2
- Voltage adjustment $+10 \%$
- Spring-up crew terminal, IP20 (finger-safe)
- DIN rail or panel surface mount
- Approvals:

CE marked

UL 508 Listed	EMC Directives:
c-UL	EN50081-2
TÜV approved	EN50082-2
LVD EN60950:2000	EN61000-6-2

 File \#E177168

Part Numbers

Style	Output Capacity	Input Voltage	Output Voltage	Rated Current	Part Number
	75	$\begin{gathered} 85 \text { to } 264 \mathrm{~V} \\ \text { AC } \end{gathered}$	24V DC	3.1A	PS5R-024
	100		24V DC	4.2A	PS5R-E24
	120	$\begin{gathered} 100 \text { to } 240 \mathrm{~V} \\ \text { AC } \end{gathered}$	24V DC	5A	PS5R-F24
	240		24V DC	10A	PS5R-G24
	480	$\begin{gathered} 320 \text { to } \\ 575 \mathrm{~V} \text { AC (3 } \\ \text { phase) } \\ \\ 360 \text { to } \\ 575 \mathrm{~V} \text { AC (2 } \\ \text { phase) } \end{gathered}$	24 V DC	20A	PS5R-TJ24*

Specifications

Model		PS5R－A05	PS5R－B05＊	－	－		－		－	
		PS5R－A12	PS5R－B12	PS5R－C12	－		－		－	
		PS5R－A24	PS5R－B24	PS5R－C24	PS5R－D24	PS5R－024	PS5R－E24	PS5R－F24	PS5R－G24	PS5R－TJ24
Output Capacity		7．5W	15W	30W	50W	75W	100W	120W	240W	480W
$\begin{aligned} & \text { 言 } \\ & \text { ㅡㅡ } \end{aligned}$	Input Voltage（single－ phase，2－wire）	100 to 240 V AC nominal（ 85 to 264 V AC）， $50 / 60 \mathrm{~Hz}$（ 47 to 63 Hz ） 110 to 340 V DC nominal（ 105 to 370 V DC）					100 to 120 V AC， 50／60Hz 200 to 240 V AC， 50／60Hz （jumper selectable） 240 to 370 V DC	100 to 240 V AC， $50 / 60 \mathrm{~Hz}$ ， 110 to 340 V DC		3 phase： 320 to 575V AC 2 phase： 360 to 575 V AC
	Input Current（typical）	$\begin{aligned} & \text { 0.17A at } \\ & 100 \mathrm{VAC} \end{aligned}$	$\begin{aligned} & 0.3 \mathrm{~A} \text { at } \\ & 100 \mathrm{~V} \text { AC } \end{aligned}$	$\begin{aligned} & 0.68 \mathrm{~A} \text { at } 100 \mathrm{~V} \\ & \mathrm{AC} \end{aligned}$	$\begin{aligned} & 1.15 \mathrm{~A} \text { at } \\ & 100 \mathrm{~V} \text { AC } \end{aligned}$	$\begin{aligned} & \text { 1.1A at } \\ & 100 \mathrm{~V} \text { AC } \end{aligned}$	2.5 A at 100 V AC 1.5 A at 200 V AC	$\begin{aligned} & 1.8 \mathrm{~A} \text { at } \\ & 100 \mathrm{~V} \text { AC } \end{aligned}$	4A at 100V AC	$\begin{aligned} & 3 \times 1.1 \mathrm{~A} \\ & 3 \times 0.8 \mathrm{~A} \end{aligned}$
	Internal Fuse Rating	2 A	2 A	3．15A	3．15A	3．15A	4 A	4A	6．3A	
	Inrush Current	50A maximum（at cold start at 200V AC）				70A maximum （at cold start at 230V AC）	50A maximum（at cold start at 200 V AC）	70 A maximum（at cold start at 230V AC）		21A na
	Leakage Current（at no load）	0.75 mA maximum（ 60 Hz ，measured in conformance with UL，CSA，VDE）								＜3．5ml
	Typical Efficiency	$\begin{aligned} & 69 \% \text { at } 5 \mathrm{~V} \\ & 75 \% \text { at } 12 \mathrm{~V} \\ & 79 \% \text { at } 24 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 75 \% \text { at } 12 \mathrm{~V} \\ & 75 \% \text { at } 24 \mathrm{~V} \end{aligned}$	79% at 24 V	83\％at 24 V	85% at 24 V	83% at 24 V		91\％
	Overvoltage Protection	Outputs turns off at 105\％（typical）								
$\begin{aligned} & \text { 芌 } \\ & \text { 芌 } \end{aligned}$	Voltage and Current Ratings	5V，1．5A 12V，0．6A 24V，0．3A	5V，2．5A 12V，1．2A 24V，0．6A	$\begin{aligned} & 12 \mathrm{~V}, 2.5 \mathrm{~A} \\ & 24 \mathrm{~V}, 1.3 \mathrm{~A} \end{aligned}$	24V，2．1A	24V，3．1A	24V，4．2A	24V，5A	24V，10A	24V，20A
	Voltage Adjustments	$\pm 10 \%$（V．ADJ screw on top）								
	Output Holding Time	$20 \mathrm{~ms} \mathrm{minimum} \mathrm{(at} \mathrm{full} \mathrm{rated} \mathrm{input} \mathrm{and} \mathrm{output)}$								10ms typical
	Rise Time	200 ms maximum（at full rated input and output）							150ms max．	？
	Line Regulation	0．4\％maximum								1．0\％max
	Load Regulation	1．5\％maximum								2．0\％max
	Fluctuation due to Ambi－ ent Temperature Change	0．05\％maximum								
	Ripple Voltage	2% peak to peak maximum（including noise）								＜10mVpp
	Overload Protection	120\％typical（Zener－limiting）		120\％typical，auto reset						125\％typical， auto reset
Operation Indicator		LED（green）								
Parallel Operation Allowed		PS5R－A	PS5R－B	PS5R－C	PS5R－D	PS5R－0	PS5R－E	PS5R－F	PS5R－G	
		No				Yes	No	Yes		Yes
	ctric Strength	Between input and output terminals： $3,000 \mathrm{~V}$ AC， 1 minute Between input terminals and housing： $2,000 \mathrm{~V}$ AC， 1 minute Between output terminal and housing：500V AC， 1 minute								
Insul	lation Resistance	Between input and output terminals／input terminals and housing： $100 \mathrm{M} \Omega$ minimum（ 500 V DC megger）								$2 \mathrm{kV} \text { AC, } 500 \mathrm{~V}$
Oper	rating Temperature	-10° to $+60^{\circ} \mathrm{C}\left(14^{\circ}\right.$ to $\left.140^{\circ} \mathrm{F}\right)$（see derating curves）								-25 to＋70 C
Stora	age Temperature	-30° to $+85^{\circ} \mathrm{C}\left(-22^{\circ}\right.$ to $\left.185^{\circ} \mathrm{F}\right)$								-40 to＋85 C
Operating Humidity		20 to 90% relative humidity（no condensation）								$\begin{aligned} & 95 \% \text { max (at } 25 \\ & \text { C, no } \\ & \text { condensation) } \end{aligned}$
Vibra	ation Resistance	$45 \mathrm{~m} / \mathrm{s}^{2}, 10$ to $55 \mathrm{~Hz}, 2$ hours on each of 3 axes				10 to $50 \mathrm{~Hz}, 0.75 \mathrm{~mm} \mathrm{p-p}, 2$ hrs on each of 3 axes				$<15 \mathrm{~Hz}$ amplitude $+/-2.5 \mathrm{~mm}$ in accordance with IEC 60068－2－6 15 to $150 \mathrm{~Hz}, 2.3 \mathrm{~g}$ ， 90 min ．
Shock	k Resistance	$300 \mathrm{~m} / \mathrm{s}^{2}(30 \mathrm{G}), 3$ shocks in each of 6 directions								30 g in all directions in ac－ cordance with IEC 60068－2－27
Approvals		Conforms to EMC Directives EN50081－2 \＆EN50082－2．LVD Directive EN60529 — Certified to EN60950． UL508 listed．c－UL，TUV approved．CE marked．EN61000－3－2								
Weight		150g	170 g	360 g	390 g	800g	600 g	1200 g	2000 g	2000 g
Termination		Spring－up，fingersafe terminals with captive M3．5 screws								
IP protection		IP20（finger safe）								
Dimensions H x W x D（mm）		$75 \times 45 \times 70$	$75 \times 45 \times 95$	$75 \times 90 \times 95$	$75 \times 90 \times 95$	$120 \times 85 \times 140$	$75 \times 145 \times 95$	$120 \times 115 \times 140$	$120 \times 200 \times 140$	$130 \times 115 \times 152.5$
Dimensions H x W x D（inches）		$2.95 \times 1.77 \times 2.76$	$2.95 \times 1.77 \times 3.74$	$\begin{aligned} & 2.95 \times 3.54 \times \\ & 3.74 \end{aligned}$	$\begin{aligned} & 2.95 \times 3.54 \\ & \times 3.74 \end{aligned}$	$\begin{aligned} & 4.72 \times 3.35 \times \\ & 5.52 \end{aligned}$	$2.95 \times 5.71 \times 3.74$	$\begin{aligned} & 4.72 \times 4.53 \times \\ & 5.52 \end{aligned}$	$\begin{aligned} & 4.72 \times 7.87 \times \\ & 5.51 \end{aligned}$	$5.12 \times 4.53 \times 6.00$

Temperature Derating Curves

PS5R-F/G

PS5R-C/D

PS5R-0

PS5R-TJ

Accessories

Part Numbers: PS5R Accessories

Appearance	Description	Part Number
	DIN rail (1000mm)	BNDN1000
	DIN rail end clip	BNL5

Installation Instructions

Time-Saving Spring-up Terminals

The innovative terminals on the PS5R series use a spring-loaded screw. This makes installation as easy as pushing down and turning with a screwdriver. Installation time is cut in half since the screws do not need to be backed out to install wiring. The screws are held captive once installed and are 100\% finger-safe. Screw terminals accept bare wire or ring or fork connectors.

1. Insert the wire connector into the slot on the side of the power supply.

2. Using a flat head or Phillips screwdriver, push down and turn the screw.
The wire is now connected, and the screw terminal is fingersafe!

Front Panel (terminals)

$\left.\begin{array}{l|l|l}\text { V. ADJ } & \begin{array}{l}\text { Voltage } \\ \text { adjustment }\end{array} & \begin{array}{l}\text { Adjusts within } \pm 10 \% \text {; turn clockwise } \\ \text { to increase output voltage }\end{array} \\ \hline \text { DC ON } & \begin{array}{l}\text { Operation } \\ \text { indicator }\end{array} & \begin{array}{l}\text { Green LED is lit when output voltage } \\ \text { is on }\end{array} \\ + \text { V, -V } & \begin{array}{l}\text { DC output } \\ \text { terminals }\end{array} & \begin{array}{l}\text { +V: Positive output Terminal } \\ - \text { V: } \text { Negative output terminal }\end{array} \\ \hline \text { L, N } & \begin{array}{l}\text { Frame } \\ \text { ground }\end{array} & \begin{array}{l}\text { Input } \\ \text { terminals } \\ \text { Ground this terminal to reduce } \\ \text { swhequency currents caused by }\end{array} \\ \text { switching }\end{array} \quad \begin{array}{l}\text { Accept a wide range of voltages and } \\ \text { frequencies (no polarity at DC input) }\end{array}\right\}$

Overcurrent Protection Characteristics
PS5R-A/B

PS5R-C/D/E

Parallel Operation

1. Parallel operation only recommended for PS5R-Q24, PS5R-F24 and PS5R-G24.
2. Factory recommended diode ST Microelectronics BYV54V-50, BYV54V-100, BYV54V-200, BYV541V-200 or with equivalent electrical specifications.
3. Using the voltage adjustment make sure out-voltage is the same for all power supplies.

PS5R-D (50W)

PS5R-E (100W)

Dimensions

PS5R-B (15W)

PS5R-0 (75W)

PS5R-G (240W)

Terminal Markings

PS5R-A/B

PS5R-C/D/Q/F/G

PS5R-E

PS3X Series

Key features:

- Compact size
- Universal AC input voltage
- $5 \mathrm{~V}, 12 \mathrm{~V}$ and 24 V DC outputs
- Available with mounting brackets for direct or DIN rail mounting
- Overcurrent/overvoltage protection
- EMC, EN55022 Class B compliant
- UL/c-UL recognized, TUV

$$
{ }_{c} 9 \Delta_{\text {us }} C \in \triangleq \equiv
$$

Part Numbers

Power Supply

Part Number Configuration

L-shaped Mounting Bracket (optional)

Applicable Power Supply	Part Number
PS3X-B	PS9Z-3N3A
PS3X-C	PS9Z-3N3B
PS3X-D	PS9Z-3E3B
PS3X-Q	PS9Z-3N3E
PS3X-E	

DIN-rail Mounting Bracket (optional)

Applicable Power Supply	Part Number
PS3X-B	PS9Z-3N4B
PS3X-C	PS9Z-3E4C
PS3X-D	PS9Z-3E4D
PS3X-0	

DIN Rail

Appearance	Part Number	Length	Material	Weight (g)
	BNDN1000	1000 mm	Aluminum	200
End Clips				
Appearance	Part Number	Description		
	BNL5	small DIN rail end clip		

Specifications

[^0]
Characteristics

Operating Temperature vs. Output Current (Derating Curves)
Conditions: Natural air cooling (operating temperature is the temperature around the power supply)

PS3X-B/C

PS3X-D/Q/E

Overcurrent Protection Characteristics

L-shaped Mounting Bracket

PS9Z-3N3A (for 15W)

PS9Z-3E3B (for 50W)

PS9Z-3N3B (for 25W)

PS9Z-3N3E (for 75W/100W)

DIN-rail Mounting Bracket

Part Number	Applicable Power Supply	L1	L2	L3	H1	H2	H3
PS9Z-3N4B	PS3X-B	95	105.5	35	5.2	20.5	50.8
	PS3X-C	95	113	35	5.2	20.5	50.8
PS9Z-3E4C	PS3X-D	136	117^{*}	35	5.2	20.5	82
	PS9Z-3E4D	PS3X-0	188	141^{*}	39.5	5.2	19.7

[^1]
Instructions

Installation Notes

1. When mounting the PS3X switching power supply, see the figure on the right.
2. See dimension drawings for mounting hole layouts.
3. Use M3 screws for mounting. Choose screws that protrude 2.5 to 4 mm from the surface of the switching power supply.
4. Do not cover the openings of the
 switching power supply. Ensure proper heat dissipation by convection.
5. Maintain a minimum of 20 mm clearance around the power supply.
6. When derating of the output does not work, provide forced air-cooling.
7. Make sure to wire the ground terminal correctly.
8. For wiring, use wires with heat resistance of $60^{\circ} \mathrm{C}$ or higher. Use copper wire.
9. Recommended tightening torque of terminal screws: $0.8 \mathrm{~N} \cdot \mathrm{~m}$

Adjustment of Output Voltage

The output voltage can be adjusted within $\pm 10 \%$ of the rated output voltage by using the V.ADJ control. Turning the V.ADJ clockwise increases the output voltage. Turning counterclockwise decreases the output voltage. Note that overvoltage protection may work when increasing the output voltage.

Overcurrent Protection

The output voltage drops automatically when an overcurrent flows, resulting in intermittent operation. Normal voltage is automatically restored when the load returns to normal conditions. However, overcurrent for a prolonged period of time or short-circuit causes the internal elements to deteriorate or break down.

Overvoltage Protection

PS3X-B/C: Voltage limit and auto-recovery method. The switching power supplies operate normally when voltage returns to normal.

PS3X-D/Q/E: The output is turned off when an overvoltage is applied. When the output voltage has dropped due to an overvoltage, turn the input off, and after one minute, turn the input on again.

Series Operation

When connecting two switching power supplies in a series, insert a Schottky diode to each output.

Parallel Operation

Parallel operation is not possible.

Insulation/Dielectric Test

When performing an insulation/dielectric test, short the input (between AC) and output (between + and -). Do not apply or interrupt the voltage suddenly, otherwise surge voltage may be generated and the power supply may be damaged.

Safety Precautions

- Do not use switching power supplies with equipment where failure or inadvertent operation may harm anyone, such as medical, aerospace, railway, nuclear, etc. PS3X switching power supplies are designed for use in general electric equipment such as office, communication, measuring, and industrial electric devices.
- Do not disassemble, repair, or modify the power supplies, otherwise electric shock, fire, or failure may occur.
- Do not install the switching power supply in places where someone will touch it when input voltage is applied. Do not touch the switching power supply while input voltage is applied and right after the power is turned off, because high temperature and high voltage may cause burns and electric shocks.
- Do not short circuit the output terminals or output lead wires, otherwise fire or damage may occur.
- Provide the final product with protection against failure or damage that may be caused by malfunction of the switching power supply. Damaged switching power supply may cause overvoltage on the output terminals, or may cause voltage drop.
- Turn off power before wiring. Also, make sure to wire correctly. Improper wiring may cause electric fire or damage.
- Do not use switching power supplies to charge rechargeable batteries.
- Make sure that the input voltage does not exceed the rating. Note polarity of input and output terminals and wire correctly. Incorrect wiring may cause blown fuses (AC input power), smoke or fire.
- Do not touch the inside of the switching power supply, and make sure that foreign objects do not enter the switching power supply, otherwise an ac-
cident or failure may occur.
- Observe the temperature derating curves. Operating temperature refers to the temperature around the lower part of the switching power supply. Failure to observe the derating curves could result in an internal temperature rise and possible failure of the switching power supply.
- The fuse inside the switching power supply is for $A C$ input. When using with DC input, install an external fuse.
- Do not set the V. ADJ control over the setting range, otherwise performance deterioration or failure may occur.
- When failure or error occurs, shut down the input to the switching power supply, and contact IDEC.
- Do not use or store the switching power supply in a place subject to extreme vibration or shocks, otherwise failure will result.
- Do not use the switching power supply where it is subject to or near:
- Direct sunlight, heat or high temperatures
- Metal powder, oil, chemicals or hydrogen sulfide
- Highly humid areas, such as a basement or conservatory
- Inside freezers or refrigerators, near cooler exhaust, or other cold environments

[^0]: 1. See "Output Current vs. Input Voltage" characteristics next page. Not subject to safety standards. When using DC input, connect a fuse to the input terminal for DC input protection.
 2. Overload for 30 seconds or longer may damage the internal elements.
 3. One minute after the output has been turned off, turn on the AC input again.
[^1]: * Note that L2 is shorter than L1.

