Selection Guide 296
HS6B Subminiature 297
HS5D Miniature 302
HS2B Full Size 309
HS1B Full Size 313
HS6E Subminiature with Solenoid 316
HS5E Miniature with Solenoid 325
HS1E Full Size Solenoid Locking. 341
HS1C Full Size Solenoid Locking. 347
HS1L Interlock Switches with Solenoid 352
HS5E-K Key Locking 355
ø22 HW Key Switch 364
HS7A-DMC Non-Contact Magnetic. 368
HS7A-DMP Non-Contact Magnetic 372
HS3A Non-contact RFID. 376
HS5B/HS5E Door Handle Actuator 380
www.IDEC.com/safety

Interlock Switches

Selection Guide

Standard Interlock Safety Switches

Series	Subminiature	Miniature		Full Size	
	HS6B	HS5B	HS5D	HS2B	HS1B
Appearance					
Page	297	www.IDEC.com/safety	302	309	313
Size (mm)	$30 \times 15 \times 78 \mathrm{~mm}$	$91 \times 30 \times 30 \mathrm{~mm}$	$30 \times 30 \times 90 \mathrm{~mm}$	$52 \times 35 \times 98 \mathrm{~mm}$	$52 \times 35 \times 125 \mathrm{~mm}$
Contacts	2 or 3	2	2 or 3	2	2
Termination	Integrated cable	Screw	Screw	Screw	Screw
Material	Plastic body	Plastic body	Metal or plastic head	Plastic head	Die-cast aluminum body

Solenoid Locking Safety Switches

Series	Subminiature	Miniature	Full Size		
	HS6E	HS5E	HS1E	HS1C	HS1L
Appearance					
Page	316	325	341	347	352
Size (mm)	$\begin{gathered} 75 \times 15 \times 75 \mathrm{~mm} \\ 500 \mathrm{~N} \end{gathered}$	$\begin{gathered} 35 \times 40 \times 146 \mathrm{~mm} \\ 1400 \mathrm{~N} \end{gathered}$	$\begin{gathered} 104 \times 35 \times 129 \mathrm{~mm} \\ 1500 \mathrm{~N} \end{gathered}$	$\begin{gathered} 106 \times 35 \times 125 \mathrm{~mm} \\ 1500 \mathrm{~N} \end{gathered}$	$\begin{gathered} 104 \times 35 \times 129 \mathrm{~mm} \\ 3000 \mathrm{~N} \end{gathered}$
Contacts	5	4	3 or 4	3 or 4	6
Termination	Integrated cable	Integrated cable	Screw	Screw	Screw
Material	Plastic body	Metal head, plastic body	Plastic body	Die-cast aluminum body	Plastic body

Key Locking Safety Switch

Series	
Appearance	$35 \times 40 \times 146$
Page	4
Size (mm)	Integrated cable Contacts Termination
Material	Metal head, plastic body

Non-contact Safety Switch

HS7A-DMC	HS7A-DMP	HS3A
368		
$7 \times 16 \times 51$	$13 \times 25 \times 88$	$40 \times 47 \times 70 \mathrm{~mm}$
2	3	3
Integrated cable		
Integrated cable	PBT	M12

HS6B Subminiature Interlock Switches

Key features:

- Only $78 \times 30 \times 15 \mathrm{~mm}$
- Two actuator entrances provide flexibility for installation options
- Integrated molded cable reduces wiring time
- IP67 (IEC60529)
- Direct Opening Action
- Actuators comply with ISO14119 and EN1088

Part Numbers

Contact Configuration	Cable Length	Part Number
1NC-1NO	1m	HS6B-11B01
	3 m	HS6B-11B03
	5 m	HS6B-11B05
2NC	1m	HS6B-02B01
	3 m	HS6B-02B03
	5 m	HS6B-02B05
$\begin{aligned} & \text { 2NC-1NO } \\ & 11+\quad \mathrm{Zb} \\ & 33-\quad 12 \end{aligned}$	1 m	HS6B-12B01
	3 m	HS6B-12B03
	5 m	HS6B-12B05
$\begin{aligned} & 3 N C \\ & \begin{array}{l} \text { 3N } \\ 11+ \\ 21 \\ 21 \\ 31 \\ \hline \end{array} \\ & \hline \end{aligned}$	1 m	HS6B-03B01
	3 m	HS6B-03B03
	5 m	HS6B-03B05

Contact Configuration \& Operation Chart

Actuator Keys (order separately)

Actuators are not included and must be ordered separately.

	Specifications					
3	Conforming to Standards	EN1088, IEC60947-5-1, EN60947-5-1, GS-ET-15, IEC60664-1, IEC60204-1, EN60204-1, UL508, CSA C22. 2 No. 14				
${ }^{2}$	Operating Temperature	-25 to $+70^{\circ} \mathrm{C}$ (no freezing)				
\bigcirc	Storage Temperature	-40 to $+80^{\circ} \mathrm{C}$ (no freezing)				
	Relative Humidity	45 to 85\% RH (no condensation)				
	Storage Humidity	95\% maximum (no condensation)				
	Altitude	2,000m maximum				
	Pollution Degree	3				
	Rated Insulation Voltage (U_{i})	300 V				
	Impulse Withstand Voltage ($\mathrm{U}_{\text {imp }}$)	4kv				
	Insulation Resistance	Between live \& dead metal parts: $100 \mathrm{M} \Omega$ maximum				
		Between positive \& negative live parts: $100 \mathrm{M} \Omega$ minimum				
	Electric Shock Protection Class	Class II				
	Degree of Protection	IP67 (IEC60529)				
	Vibration Operating Extremes	5 to 55 Hz , half amplitude 0.5 mm				
	Resistance Damage Limits	30 Hz , half amplitude 1.5 mm				
	Contact Resistance	$300 \mathrm{~m} \Omega$ maximum				
	Shock Operating Extremes	$300 \mathrm{~m} / \mathrm{s}^{2}(30 \mathrm{G})$				
	Resistance Damage Limits	$1000 \mathrm{~m} / \mathrm{s}^{2}(100 \mathrm{G})$				
	Direct Opening Travel	8 mm minimum				
	Direct Opening Force	60N minimum				
	Thermal Current (($l_{\text {th }}$)	2.54				
	Operating Frequency	1200 operations/hour				
	Mechanical Life	1,000,000 operations (GS-ET-15)				
	Recommended Actuation Speed	0.05 to $1.0 \mathrm{~m} / \mathrm{s}$				
	Wire Tensile Strength	50 N minimum				
	Electrical Life	100,000 operations (at full rated load)				
	Conditional Short-Circuit Current	50A 250V (IEC60947-5-1, IEC60269-1, -2)				
	Weight	120 g				
	Contact Ratings					
	Rated Operating Current (I_{e})	Operating Voltage (U_{e})		30 V	125 V	250 V
		AC	Resistive load (AC-12)	-	2.5 A	1.5A
		AC	Inductive load (AC-15)	-	1.5A	0.75A
		DC	Resistive load (DC-12)	2.5A	1.1A	0.55A
				(2A)	(0.4)A	(0.2A)
			Inductive load (DC-13)	2.3A	0.55 A	0.27A
\bigcirc				(1A)	(0.22A)	(0.1A)

Installation Notes

Recommended Screw Torque

- Safety switch body installation (M4 screw): 1.0~1.5N-m
- Actuator installation (M4 screw): 1.0~1.5N-m

Handling Cables

- Do not tighten or loosen the fastened cable conduit of the safety switch
- Minimum bend radius of installed cable: 40 mm

Wiring Designations

Part Number	Contact	Terminal \#	
HS6B-12B01	NC	$11-12$	Color
(2NC-1NO)	NC	$21-22$	blue-blue/white
	NO	$33-34$	orange-orange/white
HS6B-03B01	NC	$11-12$	blue-blue/white
(3NC)	NC	$21-22$	brown-brown/white
HS6B-11B01	NC	$31-32$	orange-orange/white
(1NC-1NO)	NC	$11-12$	blue-blue/white
HS6B-02B01	NO	$33-34$	orange-orange/white
(2NC)	NC	$11-12$	blue-blue/white
	NC	$31-32$	orange-orange/white

Installation

Using Angle Adjustable Actuator (HS9Z-A65/A66)

Adjustable Actuator (HS9Z-A65)

The orientation of actuator adjustment (horizontal/vertical) can be changed using the orienting insert (white plastic) installed on the back of the actuator.
The base is made of glass-reinforced PA66 (66 nylon).
Angle adjustment screws are stainless steel. When using adhesive on screws, take material compatibility into consideration.
Note 2: After mounting the actuator, remove the actuator

[^0]Right-angle actuator (HS9Z-A62)

Actuator Installation

Straight/Right-angle Actuator
 > 2-M4 Screws

 2-M4 Screws

 2-M4 Screws

Angle Adjustable Actuator

Adjustable Actuator (HS9Z-A66)
The HS9Z-A65 and HS9Z-A66 have the metal key inserted in opposite directions.

Horizontal Adjustment
Angle Adjustment
(M3 Hexagon Socket Head Screw)

Vertical Adjustment
Angle Adjustment
(M3 Hexagon Socket Head Screw)

Horizontal Adjustment Vertical Adjustment

Minimum Radius of Hinged Door

- When using the interlock switch for a hinged door, refer to the minimum radius of doors shown below. For doors with small minimum radius, use angle adjustable actuators (HS9Z-A65 or HS9Z-A66).

Note: Because deviation or dislocation of hinged door may occur in actual applications, make sure of the correct operation before installation.

HS9Z-A62 Actuator

- When the door hinge is on the extension line of the interlock switch surface:

- When the door hinge is on the extension line of the actuator mounting surface:

When using the HS9Z-A65/HS9Z-A66 Angle Adjustable (vertical) Actuator

- When the door hinge is on the extension line of the interlock switch surface: Horizontal Swing Vertical Swing

- When the door hinge is on extension line of the actuator mounting surface:

Horizontal Swing

Vertical Swing

Actuator Angle Adjustment for the HS9Z-A65/HS9Z-A66

- Using the angle adjustment screw, the actuator angle can be adjusted (see figures on page 370).
- Adjustable angle: 0 to 20°
- The larger the adjusted angle of the actuator, the smaller the applicable radius of the door opening.
- After installing the actuator, open the door. Then adjust the actuator so that its edge can enter properly into the actuator entry slot of the interlock switch.
- After adjusting the actuator angle, apply Loctite to the adjustment screw so that the screw will not become loose.

HS5D Miniature Interlock Switches

Key features:

- Detects detachment of head for enhanced safety
- Compact dimensions with up to three contacts
- The head orientation can be rotated, allowing 8 different actuator entries
- NC contacts with direct opening action (IEC/EN60947-5-1)
- M3 terminal screws for easy wiring
- Gold-plated contacts suitable for small loads

Part Numbers

	Contact Configuration	Gland Port Size	Plastic Head Type	Metal Head Type
	1NC-1N0	G1/2	HS5D-11RN	HS5D-11ZRN
	$$	PG13.5	HS5D-11RNP	HS5D-112RNP
		M20	HS5D-11RNM	HS5D-112RNM
	2NC	G1/2	HS5D-02RN	HS5D-02ZRN
	$\text { Main Circuit } \quad \Theta{ }_{11+\frac{\mathrm{Zb}}{+12}}$	PG13.5	HS5D-02RNP	HS5D-02ZRNP
	Monitor Circuit $\oplus \underline{21+22}$	M20	HS5D-02RNM	HS5D-02ZRNM
	2NC-1NO $\quad \mathrm{Zb}$	G1/2	HS5D-12RN	HS5D-12ZRN
	Main Circuit \oplus $\frac{11}{\mathrm{Zb}}$ Main Circuit Monitor Circuit $\stackrel{12}{21}$ $\stackrel{12}{21}$ $\frac{22}{33}$ 34	PG13.5	HS5D-12RNP	HS5D-12ZRNP
		M20	HS5D-12RNM	HS5D-12ZRNM
	3NC Zb	G1/2	HS5D-03RN	HS5D-03ZRN
	Main Circuit $\underbrace{(11} \stackrel{\text { Zb }}{12}$	PG13.5	HS5D-03RNP	HS5D-03ZRNP
	$\begin{array}{lllll} \text { Main Circuit } & \Theta & 21 & 22 \\ \hline \text { Monitor Circuit } & \Theta 31 & 32 \\ \hline \end{array}$	M20	HS5D-03RNM	HS5D-03ZRNM

Parts Description

Right-angle Actuator
(SUS304)

Actuator Keys (order separately)

[^1]Contact Configuration \& Operation Chart

Type	Contact Configuration	Contact Operation Chart (reference)	
HS5D-11*	Main Circuit Monitor Circuit		
HS5D-02*	Main Circuit Main Circuit	$\begin{aligned} & 11-12 \\ & 21-22 \end{aligned}$	
HS5D-12*	Main Circuit Main Circuit Monitor Circuit	$\begin{aligned} & 11-12 \\ & 21-22 \\ & 33-34 \end{aligned}$	
HS5D-03*	Main Circuit $\Theta 11$ 12 Main Circuit $\Theta 21$ 22 Monitor Circuit Θ		Actuator inserted completely

Terminal Arrangement

The operation characteristics shown in the chart above are for the HS9Z-A51. For other actuator types, add 1.3 mm .
The operation characteristics show the contact status when the actuator enters the entry slot of an interlock switch

Specifications

Applicable Standards	IS014119, EN1088, IEC60947-5-1, EN60947-5-1 (TÜV approval), GS-ET-15 (TÜV approval), UL508, CSA C22.2 No. 14, GB14048.5 (CCC approval), IEC60204-1/EN60204-1 (applicable standards for use)
Operating Temperature	-30 to $+70^{\circ} \mathrm{C}$ (no freezing)
Relative Humidity	45 to 85\% (no condensation)
Storage Temperature	-40 to $+80^{\circ} \mathrm{C}$ (no freezing)
Pollution Degree	3
Impulse Withstand Voltage	4 kV
Contact Resistance	$50 \mathrm{~m} \Omega$ maximum (initial value)
Insulation Resistance (500V DC megger)	Between live and dead metal parts: $100 \mathrm{M} \Omega$ minimum Between terminals of different poles: $100 \mathrm{M} \Omega$ minimum
Electric Shock Protection Class	Class II (IEC61140)
Degree of Protection	IP67 (IEC60529)
Shock Resistance	Damage limits: $1000 \mathrm{~m} / \mathrm{s}^{2}$
Vibration Resistance	Operating extremes: 10 to 55 Hz , amplitude 0.5 mm Damage limits: 30 Hz , amplitude 1.5 mm
Actuator Operating Speed	0.05 to $1.0 \mathrm{~m} / \mathrm{s}$
Direct Opening Travel	10 mm minimum
Direct Opening Force	50 N minimum
Operating Frequency	900 operations per hour
Mechanical Durability	1,000,000 operations minimum (GS-ET-15)
Electrical Durability	100,000 operations minimum (AC-12 250V, 6A) $1,000,000$ operations minimum (24V AC/DC, 100 mA) (operation frequency: 900 operations per hour)
Performance of Terminals 11-12 of Removed Head Unit	Mechanical damage limits: 10 operations min. Insulation resistance: $100 \mathrm{M} \Omega$ (initial value) Dielectric strength: $1000 \mathrm{~V}, 1$ minute (initial value)
Conditional Short-circuit Current	100A (250V) (note)
Weight (approx.)	Plastic head: 80 g Metal head: 110 g

Installation Notes

Recommended Screw Torque

- Safety switch body installation (M4 screw): 1.0~1.5N-m
- Actuator installation (M4 screw): 1.0~1.5N-m

Dimensions and Mounting Hole Layouts

With HS9Z-A52 Right-angle Actuator

HS5D- $\square \square R N \square$ (Plastic Head) With HS9Z-A51 Straight Actuator

With HS9Z-A52 Right-angle Actuator

All dimensions in mm
Note: Plug the unused actuator insertion slot using the slot plug supplied with the safety interlock switch.

Actuator Dimensions

Straight (HS92-A51)

Actuator Mounting Hole Layout (Straight, Right-angle)

Right-angle (HS9Z-A52)

Straight w/rubber bushing (HS9Z-A51A) Right-angle w/rubber bushing (HS9Z-A52A)

The mounting center distance is set to 12 mm at factory. When $20-\mathrm{mm}$ distance is required, adjust the distance by moving the rubber bushings.
(A)(B): The actuator has flexibility to the directions indicated by the arrows. When 20-mm distance is selected, the actuator swings vertically.

Actuator Mounting Hole Layout

(Straight w/rubber bushing)
(Right-angle w/rubber bushing)

*Mounting centers can be widened to 20 mm by moving the rubber cushions.

Actuator Mounting Reference Position

As shown in the figure below, the mounting reference position of the actuator when inserted in the interlock switch is where the actuator stop placed on the actuator lightly touches the interlock switch.
Note: After mounting the actuator, remove the actuator stop from the actuator.

Actuator Mounting Hole Layout

(Straight, Right-angle)

Note: The actuator stop is supplied with the actuator and used when adjusting the actuator position. Remove the actuator stop after the actuator position is determined.

Actuator Orientation (Angle Adjustable)

The angle of actuator swing can be changed using the orienting insert (white plastic) installed on the back of the actuator. Do not lose the orienting insert, otherwise the actuator will not operate properly.

Minimum Radius of Hinged Door

- When using the interlock switch for a hinged door, refer to the minimum radius of doors shown below. For the doors with small minimum radius, use angle adjustable actuators (HS9Z-A55).

Note: Because deviation or dislocation of hinged door may occur in actual applications, make sure of the correct operation before installation.

HS9Z-A52 Actuator

- When the door hinge is on the extension line of the interlock switch surface:

- When the door hinge is on the extension line of the actuator mounting surface:

Rotating the Head

- The head of the HS5D can be rotated by removing the four screws from the corners of the HS5D head and reinstalling the head in the desired orientation. When reinstalling the head, make sure that no foreign object enters the interlock switch. Tighten the screws tightly, because loose tightening may cause malfunction.
- Recommended screw tightening torque: 0.9 to $1.1 \mathrm{~N} \cdot \mathrm{~m}$

When using the HS9Z-A55 Angle Adjustable Actuator

- When the door hinge is on the extension line of the interlock switch surface:

Horizontal Swing

Vertical Swing

- When the door hinge is on extension line of the actuator mounting surface:

Actuator Angle Adjustment for the HS9Z-A55

- Using the angle adjustment screw, the actuator angle can be adjusted (see figures "Actuator Dimensions" on page 13). Adjustable angle: 0 to 20°
- The larger the adjusted angle of the actuator, the smaller the applicable radius of the door opening. After installing the actuator, open the door. Then adjust the actuator so that its edge can be inserted properly into the actuator entry slot of the interlock switch.
- After adjusting the actuator angle, apply Loctite to the adjustment screw so that the screw will not loosen.

Instructions

Head Removal Detection Function

Only the NC contact of the main circuit (11-12) turns OFF (open) when the head is removed, such as when rotating the head. Because NC contacts of other than the main circuit (11-12) turn ON (closed), be sure to connect the main circuit (11-12) to the safety circuit.

Recommended Tightening Torque

- Interlock Switch Mounting Screw: 1.8 $\pm 2.2 \mathrm{~N} \cdot \mathrm{~m}$
(two M4 screws)
- Housing Lid Screw: 0.2 to $0.4 \mathrm{~N} \cdot \mathrm{~m}$ (M3 screw)
- Terminal Screw: 0.6 to $0.8 \mathrm{~N} \cdot \mathrm{~m}$ (M3 screw)
- Connector: $\quad 2.7$ to $3.3 \mathrm{~N} \cdot \mathrm{~m}$
- Actuators

HS9Z-A51: $\quad 1.8 \pm 2.2 \mathrm{~N} \cdot \mathrm{~m}$ (two M4 screws)
HS9Z-A52: $\quad 0.8 \pm 1.2 \mathrm{~N} \cdot \mathrm{~m}$ (two M4 Phillips screws)
HS9Z-A51A/A52A: 1.0 to $1.5 \mathrm{~N} \cdot \mathrm{~m}$ (two M4 screws)
HS9Z-A55: $\quad 1.0$ to $1.5 \mathrm{~N} \cdot \mathrm{~m}$ (two M4 screws)

- The above recommended tightening torques of the mounting screws are the values confirmed with hex socket head bolts. When other screws are used and tightened to a smaller torque, make sure that the screws do not come loose after mounting.
- Mounting bolts must be provided by the user.
- To avoid unauthorized or unintended removal of the interlock switch and the actuator, it is recommended that the interlock switch and the actuator be installed in an unremovable manner, for example using special screws or welding the screws.

Applicable Crimping Terminal

When using crimping terminals, be sure to install insulation tubes on the crimping terminals to prevent electric shocks. When using stranded wires, make sure that loose wires do not cause short circuit. Also do not solder the terminal to prevent loose wires.

Applicable wire size (with insulation tube): 0.2 to $0.5 \mathrm{~mm}^{2}$ (20~24 AWG)
Note: Do not remove screw A during wiring. Removing the screw may cause malfunction or damage.

Applicable Wire Size

0.5 to $1.5 \mathrm{~mm}^{2}$ (16 ~ 20 AWG)

Applicable Cable Glands

Use a cable gland with a degree of protection IP67.

HS2B Full Size Interlock Switches

Key features:

- Direct Opening Action: If the door is forced open, the contacts are disconnected even if they are welded or stuck
- Available with or without an indicator (red or green)
- Flexible Installation: Two actuator entries and three conduit ports are provided
- 1NC-1NO contacts
- Compact and lightweight plastic housing
- Degree of Contact Protection: IP67

Part Numbers

Body

	Model	Contact Configuration	Pilot Light	Part Number
	HS2B (plastic housing)	1NC-1NO	With red LED	HS2B-114NB-R

Order the actuators separately (not supplied with the switch).
Standard stock items in bold.

Actuator Keys \& Accessories (order separately)

Appearance	Part Number	Description
HS9Z-A1	Straight Actuator (Mainly for sliding doors)	
HS9Z-A2	Right-angle Actuator (Mainly for rotating doors)	
HS9Z-P1	Conduit Opening Plug	

Specifications

$\begin{aligned} & 3 \\ & \text { 름 } \\ & 0 \\ & 0 \end{aligned}$	Conforming	Standards	IEC60947-5-1, EN60947-5-1, GS-ET-15, UL508				
	Operating Temperature		-25 to $+70^{\circ} \mathrm{C}$ (no freezing)				
	Storage Temperature		-40 to $+80^{\circ} \mathrm{C}$				
	Operating Humidity		85\% RH maximum (no condensation)				
	Altitude		2,000m maximum				
-	Rated Insulation Voltage (Ui)		300 V (between LED and ground: 60V)				
	Impulse Withstand Voltage (Uimp)		4 kV (between LED and ground: 2.5 kV)				
	Insulation Resistance		Between live and dead metal parts: $100 \mathrm{M} \Omega$ minimum Between live metal part and ground: $100 \mathrm{M} \Omega$ minimum Between live metal parts: $\quad 100 \mathrm{M} \Omega$ minimum Between terminals of the same pole: $100 \mathrm{M} \Omega$ minimum				
	Electric Shock Protection Class		Class II (IEC61140)				
	Pollution Degree		3 (IEC60947-5-1)				
	Degree of Protection		IP67 (IEC60529)				
	Vibration Resistance	Operating Extremes	10 to 55 Hz , amplitude 0.5 mm				
		Damage Limits	$60 \mathrm{~m} / \mathrm{sec}^{2}$ (approx. 6G)				
	Shock Resistance		1,000 m/sec² (approx. 100G)				
	Actuator Operating Speed		$1 \mathrm{~m} / \mathrm{sec}$ maximum				
	Positive Opening Travel		11 mm minimum				
	Positive Opening Force		36 N minimum				
	Thermal Current (lth)		10A				
	Operating Frequency		900 operations/hour				
	Mechanical Life		1,000,000 operations				
	Electrical Life		100,000 operations (rated load)				
	Conditional Short-circuit Current		100A (IEC60947-5-1)				
	Recommended Short Circuit Protection		250V, 10A fuse (Type D01 based on IEC60269-1, 60269-2)				
	Indicator	Operating Voltage	24 V DC				
		Current	10 mA				
		Light Source	LED lamp				
		Lens Color	Red or Green (12 mm dia. Lens)				
	Weight		Approx. 130g				
	Contact Ratings						
	Rated Operating Current (le)		Operating Voltage (Ue)		30 V	125 V	250 V
			AC	Resistive load (AC12) Inductive load (AC15)	$\begin{aligned} & 10 \mathrm{~A} \\ & 10 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 10 \mathrm{~A} \\ & 5 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 6 \mathrm{~A} \\ & 3 \mathrm{~A} \end{aligned}$
			DC	Resistive load (DC12) Inductive load (DC13)	$\begin{aligned} & 8 \mathrm{~A} \\ & 4 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 2.2 \mathrm{~A} \\ & 1.1 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 1.1 \mathrm{~A} \\ & 0.6 \mathrm{~A} \end{aligned}$

Application Examples and Circuit Diagrams

	Status 1	Status 2		Status 1	Status 2
Door/ Switch Status	Door Closed Machine ready to operate	Door opened Machine cannot be started	Door/ Switch Status	Door Closed Machine ready to operate	Door opened Machine cannot be started
Door			HS2B-11 (1NO-1NC) Circuit Diagram		
Main Circuit	3-4: Closed	3-4: Open	Main Circuit	3-4: Closed	3-4: Open
Aux. Circuit	1-2: Open	1-2: Closed	Aux. Circuit	1-2: Open	1-2: Closed

Dimensions (mm)

Using the straight actuator (HS9Z-A1)
(Horizontal Mounting)

(Note)
(Vertical Mounting)

Interlock Switch Mounting Hole Layout

Dimensions (mm), continued

Using the Right-angle actuator (HSSZ-A2)
(Horizontal Mounting)

Plug the unused actuator insertion slot using the slot plug supplied with the interlock switch.
(Vertical Mounting)

Interlock Switch

Mounting Hole Layout

Actuator Dimensions

Straight Actuator HS9Z-A1

Adjustable Actuator

Actuator Angle Adjustment

 radius of the door opening.

The actuator angle is adjustable (0° to 20°) for hinged doors.
The minimum radius of the door opening can be as small as 100 mm .

- Using the screw (M3 hex socket head screw), the actuator angle can be adjusted (refer to the dimensional drawing). Adjustable angle: $\left(0^{\circ}\right)$ to 20°
- The larger the adjusted angle of the actuator, the smaller the applicable

Right-angle Actuator HSSZ-A2

Angle-adjustable Actuator HS9Z-A3

- After installing the actuator, open the door. Then adjust the actuator so that its edge can be inserted properly into the entry slot of the safety switch.
- Recommended tightening torque: $0.8 \mathrm{~N}-\mathrm{m}$ (approx. $8.0 \mathrm{kgf-cm}$)
- After adjusting the actuator angle, apply loctite or the like to the adjustment screw to prevent it from loosening.

HS1B Full Size Interlock Switches

Key features:

- Rugged aluminum die-cast housing
- Direct Opening Action
- Available with or without an indicator (red or green)
- Flexible Installation: Two actuator entries and three conduit ports are provided
- Select from two circuit configurations (1NO-1NC or 2NC).
- IP67

c U. \triangle Tuv \longrightarrow

Part Numbers
Body

Model			Contact Configuration	Pilot Light	Part Number
$\begin{array}{ll} { }^{2} G \\ 0 & 0 \\ (1) & \oplus \end{array}$			1NC-1N0	Without	HS1B-11R
				Red LED	HS1B-114R-R
				Green LED	HS1B-114R-G
$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 1 \\ & \text { (1) } \\ & \hline \end{aligned}$			2NC	Without	HS1B-02R
				Red LED	HS1B-024R-R
	$\begin{array}{c\|c} \stackrel{A}{A} & \omega \\ \underbrace{1}_{\text {Main Circcuit }} \end{array}$			Green LED	HS1B-024R-G

Standard stock items in bold.

Appearance	Part Number	Description
	HS9Z-A1	Straight Actuator (Mainly for sliding doors)
	HS9Z-A2	Right-angle Actuator (Mainly for rotating doors)
	HS9Z-A3	Adjustable Actuator
	HS9Z-T1	Key Wrench (included with switch)
	HS9Z-P1	Conduit Opening Plug

Actuators are not included and must be ordered separately.

Specifications

Conforming to Standards	IEC60947-5-1, EN60947-5-1, GS-ET-15, UL508, CSA C22.2 No. 14
Operating Temperature	-20 to $+70^{\circ} \mathrm{C}$ (no freezing)
Storage Temperature	-40 to $+80^{\circ} \mathrm{C}$
Relative Humidity	45 to 85% (no condensation)
Altitude	$2,000 \mathrm{~m}$ maximum
Rated Insulation Voltage (U.)	300 V (between LED and ground: 60V)
Impulse Withstand Voltage ($\mathrm{U}_{\text {imp }}$)	4 kV (between LED and ground: 2.5 kV)
	Between live and dead metal parts: $100 \mathrm{M} \Omega$ minimum Between live metal part and ground: $100 \mathrm{M} \Omega$ minimum Between live metal parts: Between terminals of the same pole: $100 \mathrm{M} \Omega$ minimum Insulation Resistance
Electric Shock Protection Class	Class I (IEC61140)
Pollution Degree	3 (IEC60947-5-1)
Degree of Protection	IP67 (IEC60529)
Vibration	Operating Extremes
Resistance	Damage Limits

Shock Resistance
Actuator Operating Speed
Direct Opening Travel
Direct Opening Force
Thermal Current $\left(I_{\text {th }}\right)$
Operating Frequency
Mechanical Life
Electrical Life
Conditional Short-circuit Current
Recommended Short Circuit Protection
Operating Voltage
Current
Light Source
Lens Color
Weight
$1,000 \mathrm{~m} / \mathrm{sec}^{2}$ (approx. 100G)
0.05 to $1.0 \mathrm{~m} / \mathrm{s}$

11 mm minimum
20N minimum
10A
900 operations/hour
1,000,000 operations
100,000 operations (rated load)
100A (IEC60947-5-1)
250V, 10A fuse (Type D01 based on IEC60269-1, 60269-2)
$24 \mathrm{~V} D \mathrm{C}$
10 mA
LED Iamp
Red or Green (12 mm dia. Lens)
Approx. 280g

Contact Ratings

Rated Operating Current (I_{e})	Operating Voltage (U_{e})		30 V	125 V	250V
	AC	Resistive load (AC12) Inductive load (AC15)	$\begin{aligned} & 10 \mathrm{~A} \\ & 10 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 10 \mathrm{~A} \\ & 5 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 6 \mathrm{~A} \\ & 3 \mathrm{~A} \end{aligned}$
	DC	Resistive load (DC12) Inductive load (DC13)	$\begin{aligned} & 8 \mathrm{~A} \\ & 4 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 2.2 \mathrm{~A} \\ & 1.1 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 1.1 \mathrm{~A} \\ & 0.6 \mathrm{~A} \end{aligned}$

Application Examples and Circuit Diagrams

[^2]Using the straight actuator (HS9Z-A1)

Plug the unused actuator insertion slot using the slot plug supaliad with the interlock switch.

Dimensions (mm)

Using the Right-angle actuator (HS9Z-A2)

Straight Actuator HS9Z-A1

Adjustable Actuator

The actuator angle is adjustable (0° to 20°) for hinged doors.
The minimum radius of the door opening can be as small as 100 mm .

Actuator Angle Adjustment

- Using the screw (M3 hex socket head screw), the actuator angle can be adjusted (refer to the dimensional drawing). Adjustable angle: (0°) to 20°
- The larger the adjusted angle of the actuator, the smaller the applicable

Angle-adjustable Actuator HS9Z-A3 screw to prevent it from loosening.
radius of the door opening.

- After installing the actuator, open the door. Then adjust the actuator so that its edge can be inserted properly into the entry slot of the safety switch.
- Recommended tightening torque: $0.8 \mathrm{~N}-\mathrm{m}$ (approx. $8.0 \mathrm{kgf-cm}$)
- After adjusting the actuator angle, apply loctite or the like to the adjustment

Actuator Dimensions

Right-angle Actuator HS9Z-A2

$\rightarrow \xrightarrow{7 k^{2}}$

HS6E Subminiature Interlock Switches with Solenoid

Key features:

- Compact body: $75 \times 15 \times 75 \mathrm{~mm}$

15 mm wide, thinnest solenoid interlock switch in the world

- Reversible mounting and angled cable allow four actuator insertion directions
- Energy saving: 24V DC, 110 mA (solenoid: 100 mA, LED: 10 mA)
- Manual unlocking possible on three sides
- LED indicator shows solenoid operation
- 500 N locking retention force

Part Numbers

(Actuator inserted) (Solenoid OFF)

| lain Circuit: | Θ | 11 | 12 | 41 | 42 | 1 m | HS6E-N44B01-G |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| lonitor Circuit: | $\Theta 21$ | 22 | 53 | 54 | 3 m | HS6E-N44B03-G | |
| lonitor Circuit: | $\underline{33}$ | 34 | | | 5 m | HS6E-N44B05-G | |

Iain Circuit: Ionitor Circuit:

HS6E-P44B01-G
HS6E-P44B03-G HS6E-P44B05-G

HS6E-L7Y4B01-G HS6E-L7Y4B03-G HS6E-L7Y4B05-G

(Actuator inserted) (Solenoid ON)

HS6E-M7Y4B01-G HS6E-M7Y4B03-G HS6E-M7Y4B05-G

HS6E-N7Y4B01-G HS6E-N7Y4B03-G HS6E-N7Y4B05-G

HS6E-P7Y4BO1-G HS6E-P7Y4B03-G HS6E-P7Y4B05-G

Actuator Keys

Specifications

Conforming to Standards		UL 508 (UL listed), CSA C22.2, No. 14 (c-UL listed), ISO 14119 IEC 60947-5-1, EN 60947-5-1 (TÜV approval), EN 1088 (TÜV approval), GS-ET-19 IEC 60204-1/EN 60204-1 (applicable standards for use)
Operating Temperature		-25 to $+50^{\circ} \mathrm{C}$ (no freezing)
Storage Temperature		-40 to $+80^{\circ} \mathrm{C}$ (no freezing)
Operating Humidity		45 to 85\% (no condensation)
Rated Insulation Voltage (U_{i})		300 V (between LED and ground: 60V)
Impulse Withstand Voltage ($\mathrm{U}_{\text {imp }}$)		Main \& lock monitor circuits: 1.5 KV Door monitor circuit: 2.5 kV Between solenoid/LED and ground: 0.5 kV
Insulation Resistance (500V DC megger)		Between live and dead metal parts: $100 \mathrm{M} \Omega$ minimum Between terminals of different poles: $100 \mathrm{M} \Omega$ minimum.
Contact Resistance		$300 \mathrm{~m} \Omega$ maximum (initial value, 1 m cable) $500 \mathrm{~m} \Omega$ maximum (initial value, 3 m cable) $700 \mathrm{~m} \Omega$ maximum (initial value, 5 m cable)
Electric Shock Protection Class		Class II (IEC 61140)
Pollution Degree		3
Degree of Protection		IP67 (IEC 60529)
Vibration Resistance	Operating Extremes	10 to 55 Hz , amplitude 0.35 mm
	Damage Limits	30 Hz , amplitude 1.5 mm
Shock Resistance	Operating Extremes	$100 \mathrm{~m} / \mathrm{s}^{2}(10 \mathrm{G})$
	Damage Limits	$1000 \mathrm{~m} / \mathrm{s}^{2}$ (100G)
Actuator Operating Speed		0.05 to $1.0 \mathrm{~m} / \mathrm{s}$
Direct Opening Travel		8.0 mm minimum
Direct Opening Force		60 N minimum
Actuator Retention Force		500N maximum (GS-ET-19)
Operating Frequency		900 operations/hour
Mechanical Life		1,000,000 operations minimum (GS-ET-19)

1. UL, c-UL rating: Main/Lock monitor circuit: 125 V AC, 1 A Pilot duty, 125 V DC, 0.22 A Pilot duty Door monitor circuit:240V AC, 0.75 A Pilot duty250V DC, 0.27 A Pilot duty
2. TÜV rating: Main/Lock monitor circuit: AC-15 125V/1A, DC-13 125V/0.22A Door monitor circuit: AC-15 240V/0.75A, DC-13 250V/0.27A

Dimensions (mm)
Interlock Switch

Mounting Hole Layout

When using right-angle actuator
(HS9Z-A62)

Actuator Mounting Reference Position

As shown in the figure on the right, the mounting reference position of the actuator key when inserted in the interlock switch is:
The actuator stop on the actuator lightly touches the interlock switch.

After mounting the actuator, remove the actuator stop from the
actuator.

Circuit Diagrams and Operating Characteristics

Operation Characteristics (reference)
Main circuit: Connected to the machine drive control circuit, sending the interlock signals of the protective door.
Monitor circuit: Sends the monitoring signals of open/closed and lock/unlocked statuses of the protective door.

Main Circuit

Door Monitor Circuit (door open, NO) Door Monitor Circuit (door closed, NC) Lock Monitor Circuit (unlocked, NO) Lock Monitor Circuit (locked, NC)

The characteristics shown in the chart above are of the HS9Z-A61, -A62, -A65, and -A66 actuators. For the HS9Z-A62S actuator, subtract 0.6 mm .
The characteristics show the contact status when the actuator enters an entry slot of an interlock switch.

$\begin{aligned} & 3 \\ & \sum_{0}^{0} \\ & 0 \\ & 0 \end{aligned}$	Solenoid Lock Type				Status 1	Status 2	Status 3	Status 4	Unlocking Using Manual Unlock Key
	Interlock Switch Status				Door closed Machine ready to operate Solenoid energized	Door closed Machine cannot be operated Solenoid de-energized	Door open Machine cannot be operated Solenoid de-energized	Door open Machine cannot be operated Solenoid de-energized	Door open Machine cannot be operated Solenoid de-energized
	Door Status								
	Circuit Diagram (Example: HS6E-N7Y)								
	Doo				Closed (locked)	Closed (unlocked)	Open	Open	Closed (unlocked)
				Main Ciruitil1-42	ON (closed)	OFF (open)	OFF (open)	OFF (open)	OFF (open)
				Door Monitor Circuit (door closed) 21-22	ON (closed)	ON (closed)	OFF (open)	OFF (open)	ON (closed)
				Door Monitor Circuit (door closed) 31-32	ON (closed)	ON (closed)	OFF (open)	OFF (open)	ON (closed)
				Lock Monitor Circuit (unlocked) 53-54	OFF (open)	ON (closed)	ON (closed)	ON (closed)	ON (closed)
				Main Ciruitil1-42	ON (closed)	OFF (open)	OFF (open)	OFF (open)	OFF (open)
				Door Monitor Circuit (door closed) 21-22	ON (closed)	ON (closed)	OFF (open)	OFF (open)	ON (closed)
				Door Monitor Circuit (door closed) 31-32	ON (closed)	ON (closed)	OFF (open)	OFF (open)	ON (closed)
				Lock Monitor Circuit (locked) 51-52	ON (closed)	OFF (open)	OFF (open)	OFF (open)	OFF (open)
		HS6E-N7Y		Main Ciruit $11-42$	ON (closed)	OFF (open)	OFF (open)	OFF (open)	OFF (open)
				Door Monitor Circuit (door closed) 21-22	ON (closed)	ON (closed)	OFF (open)	OFF (open)	ON (closed)
		Main Circuit: Monitor Circuit		Door Monitor Circuit (door open) 33-34	OFF (open)	OFF (open)	ON (closed)	ON (closed)	OFF (open)
				Lock Monitor Circuit (unlocked) 53-54	OFF (open)	ON (closed)	ON (closed)	ON (closed)	ON (closed)
		HS6E-P7Y		Main Ciruit 11.42	ON (closed)	OFF (open)	OFF (open)	OFF (open)	OFF (open)
				Door Monitor Circuit (door closed) 21-22	ON (closed)	ON (closed)	OFF (open)	OFF (open)	ON (closed)
				Door Monitor Circuit (door open) 33-34	OFF (open)	OFF (open)	ON (closed)	ON (closed)	OFF (open)
				Lock Monitor Circuit (locked) 51-52	ON (closed)	OFF (open)	OFF (open)	OFF (open)	OFF (open)
Solenoid Power A1-A2 (all types)					ON (energized)	OFF (de-energized)	OFF (de-energized)	ON (energized) (Note 2)	OFF (de-energized) to ON (re-energized) (Note 1) (Note 2)

Main circuit: Connected to the machine drive control circuit, sending the interlock signals of the protective door. Monitor circuit: Sends the monitoring signals of open/closed and lock/unlocked statuses of the protective door.

Note 1: Do not attempt manual unlocking while the solenoid is energized
Note 2: Do not energize the solenoid for a long period of time while the door is open or while the door is unlocked manually using the manual unlock key.

Operation Characteristics (reference)

Main Circuit

Door Monitor Circuit (door open, NO) Door Monitor Circuit (door closed, NC) Lock Monitor Circuit (unlocked, NO) Lock Monitor Circuit (locked, NC)

The characteristics shown in the chart above are of the HS9Z-A61, -A62, -A65, and -A66 actuators. For the HS9Z-A62S actuator, subtract 0.6 mm . The characteristics show the contact status when the actuator enters an entry slot of an interlock switch.

Operating Instructions

Minimum Radius of Hinged Door

- When using the interlock switch on hinged doors, refer to the minimum radius of doors shown below. When using on doors with small minimum radius, use the angle adjustable actuator (HS9Z-A65 and HS9Z-A66).

Note: Because deviation or dislocation of hinged doors may occur in actual applications, make sure of the correct operation before installation.

When Using the HS9Z-A62/A62S Right-angle Actuator

- When door hinge is on the extension line of the interlock switch surface:

- When door hinge is on the extension line of the interlock switch surface

Horizontal Adjustment

Vertical Adjustment

- When door hinge is on the extension line of the actuator mounting surface

Horizontal Adjustment

Vertical Adjustment

Actuator Angle Adjustment for the HS9Z-A65/HS9Z-A66

- Using the angle adjustment screw, the actuator angle can be adjusted (see figures on page 370).
Adjustable angle: 0 to 20°
- The larger the adjusted angle of the actuator, the smaller the applicable radius of the door opening
- After installing the actuator, open the door. Then adjust the actuator so that its edge can enter properly into the actuator entry slot of the interlock switch.
- After adjusting the actuator angle, apply Loctite to the adjustment screw so that the screw will not become loose.

Mounting Examples

Application on Sliding Doors
Application on Hinged Doors

Note: When mounting the actuator, make sure that the actuator enters the slot in the correct direction, as shown on the right.

For Manual Unlocking

When using the manual unlock key

Manual Unlocking Position

- Using the interlock switch with the actuator not fully turned (less than 90°) may cause damage to the interlock switch or operation failures (when manually unlocked, the switch will keep the main circuit disconnected and the door unlocked).
- Do not apply excessive force ($0.45 \mathrm{~N} \cdot \mathrm{~m}$ or more) to the manual unlock part, otherwise the manual unlock part will become damaged.

Manual Unlock Key (supplied with the interlock switch)

See instruction manual for full details.

Recommended Tightening Torque of Mounting Screws

- Actuators: 1.0 to $1.5 \mathrm{~N} \cdot \mathrm{~m}$ (two M4 screws)

Cables

- Do not fasten or loosen the gland at the bottom of the interlock switch.
- When bending the cable during wiring, make sure that the cable radius is kept at 30 mm minimum.
- When wiring, make sure that water or oil does not enter from the end of the cable.
- Do not open the lid of the interlock switch. Otherwise the interlock switch will be damaged.
- The solenoid has polarity. Make sure of the correct polarity when wiring

Wire Identification

- Wires can be identified by color and or a white line printed on the wire.

No.	Insulation Color	No.	Insulation Color
1	Blue/White	7	White
2	Gray	8	Black
3	Pink	9	Pink/White
4	Orange	10	Brown/White
5	Orange/White	11	Brown
6	Gray/White	12	Blue

Note: The contact arrangements show the contact status when the actuator is inserted and locked.

Type	Contact Arrangement
HS6E-L	
HS6E-M	Main circuit: Blue Θ 11 12 41 42 Blue/White Monitor circuit: Brown Θ 21 22 Brown/White Pink 51 52 Monitor circuit: Orange Θ Pink/White
HS6E-N	
HS6E-P	

HS5E Miniature Interlock Switches with Solenoid

Spring Lock Type Features:

- Automatically locks the actuator without power applied to the solenoid
- After the machine stops, unlocking is completed by the solenoid, providing high safety features
- Manual unlocking is possible in the event of power failure or maintenance
- Gold-plated contacts

Solenoid Lock Type Features:

- The actuator is locked when energized
- The actuator is unlocked when de-energized
- Flexible locking function can be achieved for an application where locking is not required and sudden stopping of machine must be prevented
- Gold-plated contacts

c ${ }^{-1}$
 © -Gs

$\begin{aligned} & \text { ? } \\ & \text { 름 } \\ & 00 \end{aligned}$	Part Numbers Spring Lock Type (Power Solenoid to Unlock)								
	Circuit Code	Contact Configuration			Cable Length	Part Number			
					Without LED	With LED	With LED and Rear Unlock Button		
	A								
	Main Circuit: $1 \mathrm{NC}+1 \mathrm{NC}$ Door Monitor Circuit: 1NO Lock Monitor Circuit: 1NO	Main Circuit: Monitor Circuit: Monitor Circuit:	$\Theta$$\begin{array}{l:l} 111+ \\ 23 & 24 \\ \hline \end{array}$	41 42 53 54	1 m	HS5E-A4001	HS5E-A4401-G	HS5E-A44L01-G	
					3 m	HS5E-A4003	HS5E-A4403-G	HS5E-A44L03-G	
					5 m	HS5E-A4005	HS5E-A4405-G	HS5E-A44L05-G	
	B Main Circuit: 1NC+1NC Door Monitor Circuit: 1NO Lock Monitor Circuit: 1NC	Main Circuit: Monitor Circuit: Monitor Circuit:	Θ 11 23 12		1 m	HS5E-B4001	HS5E-B4401-G		
					3 m	HS5E-B4003	HS5E-B4403-G		
					5 m	HS5E-B4005	HS5E-B4405-G		
	C Main Circuit: 1NC+1NC Door Monitor Circuit: 1NC Lock Monitor Circuit: 1NO	Main Circuit: Monitor Circuit: Monitor Circuit:	Θ 11 12 41 21 22 $\underline{53}$ 54		1 m	HS5E-C4001	HS5E-C4401-G	HS5E-C44L01-G	
					3 m	HS5E-C4003	HS5E-C4403-G	HS5E-C44L03-G	
					5 m	HS5E-C4005	HS5E-C4405-G	HS5E-C44L05-G	
	D Main Circuit: 1NC+1NC Door Monitor Circuit: 1NC Lock Monitor Circuit: 1NC	Main Circcit: Monitor Circuit: Monitor Circuit:	Θ 11 12 41		1 m	HS5E-D4001	HS5E-D4401-G	HS5E-D44L01-G	
					3 m	HS5E-D4003	HS5E-D4403-G	HS5E-D44L03-G	
					5 m	HS5E-D4005	HS5E-D4405-G	HS5E-D44L05-G	
	F Main Circuit: 1NC+1NC Door Monitor Circuit: 2NC	Main Circuit: Monitor Circuit: Monitor Circuit:	$\begin{array}{l:l} \Theta 11 & 12 \\ \hline \Theta 21 & 22 \\ \Theta 31 & 32 \\ \hline \end{array}$	$\begin{array}{l:l} 41 & 42 \\ \hline \end{array}$	1 m	HS5E-F4001	HS5E-F4401-G	HS5E-F44L01-G	
					3 m	HS5E-F4003	HS5E-F4403-G	HS5E-F44L03-G	
					5 m	HS5E-F4005	HS5E-F4405-G	HS5E-F44L05-G	
	G Main Circuit: 1NC+1NC Door Monitor Circuit: 1NC, 1NO	Main Circuit: Monitor Circuit: Monitor Circuit:	$\oplus 11$ 21 33	$\begin{array}{l:l} 41 & 42 \\ \hline \end{array}$	1 m	HS5E-G4001	HS5E-G4401-G	HS5E-G44L01-G	
					3 m	HS5E-G4003	HS5E-G4403-G	HS5E-G44L03-G	
					5 m	HS5E-G4005	HS5E-G4405-G	HS5E-G44L05-G	
	H Main Circuit: 1NC+1NC Door Monitor Circuit: 2NC	Main Circuit: Monitor Circuit: Monitor Circuit:	$\Theta 11 \quad 12$	$\begin{array}{l:l} 41 & 42 \\ \hline 51 & 52 \\ \hline 61 & 62 \\ \hline \end{array}$	1 m	HS5E-H4001	HS5E-H4401-G		
					3 m	HS5E-H4003	HS5E-H4403-G		
					5 m	HS5E-H4005	HS5E-H4405-G		
	Main Circuit: 1NC+1NC Door Monitor Circuit: 1NC, 1NO	Main Circuit: Monitor Circuit: Monitor Circuit:	$\Theta 11+12$	$\begin{array}{l:l} 41 & 42 \\ \hline 51 & 52 \\ \hline 63 & 64 \\ \hline \end{array}$	1 m	HS5E-J4001	HS5E-J4401-G		
					3 m	HS5E-J4003	HS5E-J4403-G		
					5 m	HS5E-J4005	HS5E-J4405-G		

The contact configuration shows the status when the actuator is inserted and the switch is locked.
The contact configuration shows the status when the indicator is installed.
Actuators are not supplied with the interlock switch and must be ordered separately.
Standard stock items in bold

Dual Safety Circuit type

1. The contact configuration shows the status when the actuator is inserted and the switch is locked.
2. Manual unlock key is included with the interlock switch.
3. Actuators are not supplied with the interlock switch and must be ordered separately.
4. Standard stock items in bold

Four-circuit Independent Output Type (Spring Lock)

The contact configuration shows the status when the actuator is inserted and the switch is locked. Actuators are not supplied with the interlock switch and must be ordered separately. Standard stock items in bold.

Four-circuit Independent Output Type (Solenoid Lock)

The contact configuration shows the status when the actuator is inserted and the switch is locked.
Actuators are not supplied with the interlock switch and must be ordered separately.
Standard stock items in bold.

The contact configuration shows the status when the actuator is inserted and the switch is locked.
The contact configuration shows the status when the indicator is installed.
Actuators are not supplied with the interlock switch and must be ordered separately. Standard stock items in bold

Actuator Keys \& Accessories (order separately)

| Appearance | Part Number | Description | Part Number | Description |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Padlock Hasp (prevents unauthorized insertion | | | | |
| of actuator) | | | | |

HS5E- $\square 44 \mathrm{~L} \square$-G (rear unlocking button type) Horizontal Mounting/Straight Actuator (HS9Z-A51)

RP (Actuator Mounting Reference Position) Rear unlocking button mounting

$X \leq 6$ Panel mounting
$6<X<23$ Not mountable
$23 \leq X \leq 33$ Use HS9Z-FL53 rear unlocking button kit (Note) $33<X \leq 43$ Use HS9Z-FL54 rear unlocking button kit (Note)
$X=$ Panel thickness
(including panel, mounting frame, and mounting plate) Note: See page 332 for details.

Note: With the mounting hole dimension, the rear unlocking button rod does not touch the hole even when the interlock switch moves sideways.

Actuator Mounting Reference Position

As shown in the figure on the right, the mounting reference position of the actuator when inserted in the interlock switch is where the actuator stop placed on the actuator lightly touches the interlock switch.
Note: After mounting the actuator, remove the actuator stop from the actuator.

Dimensions and Mounting Hole Layouts, continued

Straight Actuator (HS9Z-A51)

Straight Actuator w/Rubber Bushings (HS9Z-A51A)

- The mounting center distance is set to 12 mm at factory. When $20-\mathrm{mm}$ distance is required, adjust the distance by moving the rubber bushings.
The actuator has flexiblity to the direction indicated by the arrows. When $20-\mathrm{mm}$ distance is selected, the actuator swings vertically.

Actuator Orientation

The orientation of actuator swing (horizontal/vertical) can be changed using the orienting insert (white plastic) installed on the back of the actuator. Do not lose the orientating insert, otherwise the actuator will not swing properly.

Right-angle Actuator (HS9Z-A52)

Actuator Stop (supplied with the actuator) (Note)

Right-angle Actuator w/Rubber Bushings (HS9Z-A52A)

Dimensions and Mounting Hole Layouts, continued

Manual Unlocking Key (Metal) (HS9Z-T3)

Manual Unlocking Key (plastic)

Rear Unlocking Button Kit Mounting Hole Layout

Note: With the mounting hole dimension, the rear unlocking button rod does not touch the hole even when the interlock switch moves sideways.

Circuit Diagrams and Operating Characteristics
Standard and Rear Unlocking Type - Spring Lock Type

Interlock Switch Status			Status 1	Status 2	Status 3	Status 4	Manual Unlock
			- Door Closed - Machine ready to operate - Solenoid de-energized	- Door Closed - Machine cannot be operated - Solenoid de-energized	- Door Open - Machine cannot be operated - Solenoid de-energized	- Door Open - Machine cannot be operated - Solenoid energized	- Door Closed - Machine cannot be operated - Solenoid de-energized \rightarrow energized
Door Status							
Circuit Diagram (HS5E-A4)							
Door			Closed (locked)	Closed (unlocked)	Open	Open	Closed (unlocked)
		$\begin{aligned} & \text { Main Circuit } \\ & 11-42 \end{aligned}$	ON (closed)	OFF (open)	OFF (open)	OFF (open)	OFF (open)
		$\begin{gathered} \text { Monitor Circuit } \\ \text { (door open) } \\ 23-24 \end{gathered}$	OFF (open)	OFF (open)	ON (closed)	ON (closed)	OFF (open)
		$\begin{gathered} \text { Monitor Circuiut } \\ \text { (unlocked) } \\ 53-544 \end{gathered}$	OFF (open)	ON (closed)	ON (closed)	ON (closed)	ON (closed)
		$\begin{aligned} & \text { Main Circuit } \\ & 11-42 \end{aligned}$	ON (closed)	OFF (open)	OFF (open)	OFF (open)	OFF (open)
		$\begin{gathered} \text { Monitor Circcuit } \\ \text { (door open) } \\ 23-24 \end{gathered}$	OFF (open)	OFF (open)	ON (closed)	ON (closed)	OFF (open)
		$\begin{gathered} \text { Monito Circuit } \\ \text { (locked) } \\ 51-52 \\ \hline \end{gathered}$	ON (closed)	OFF (open)	OFF (open)	OFF (open)	OFF (open)
Contact Configuration		$\begin{gathered} \text { Main Circuit } \\ 11-42 \end{gathered}$	ON (closed)	OFF (open)	OFF (open)	OFF (open)	OFF (open)
		$\begin{gathered} \text { Monitor Circuit } \\ \text { (door closed) } \\ 21-22 \end{gathered}$	ON (closed)	ON (closed)	OFF (open)	OFF (open)	ON (closed)
		$\begin{gathered} \text { Monitor Circcuit } \\ \text { (unlocked) } \\ 53-54 \\ \hline \end{gathered}$	OFF (open)	ON (closed)	ON (closed)	ON (closed)	ON (closed)
		Main Circuit 11-42	ON (closed)	OFF (open)	OFF (open)	OFF (open)	OFF (open)
		Monitor Circuit (door closed) 21-22	ON (closed)	ON (closed)	OFF (open)	OFF (open)	ON (closed)
		$\begin{gathered} \text { Monitor Circuit } \\ \text { (locked) } \\ 51-52 \end{gathered}$	ON (closed)	OFF (open)	OFF (open)	OFF (open)	OFF (open)
		$\begin{aligned} & \text { Main Circuit } \\ & 11-42 \end{aligned}$	ON (closed)	OFF (open)	OFF (open)	OFF (open)	OFF (open)
		$\begin{gathered} \text { Monitor Circuit } \\ \text { (door closed) } \\ 21-22 \end{gathered}$	ON (closed)	ON (closed)	OFF (open)	OFF (open)	ON (closed)
		$\begin{gathered} \text { Monitor Circuit } \\ \text { (door closed) } \\ 31-32 \end{gathered}$	ON (closed)	ON (closed)	OFF (open)	OFF (open)	ON (closed)
		$\begin{aligned} & \text { Main Circuit } \\ & 11-42 \end{aligned}$	ON (closed)	OFF (open)	OFF (open)	OFF (open)	OFF (open)
		$\begin{gathered} \text { Monitor Circuit } \\ \text { (door closed) } \\ 21-22 \end{gathered}$	ON (closed)	ON (closed)	OFF (open)	OFF (open)	ON (closed)
		$\begin{gathered} \text { Monitor Circuit } \\ \text { (door open) } \\ 33-34 \end{gathered}$	OFF (open)	OFF (open)	ON (closed)	ON (closed)	OFF (open)
		$\begin{gathered} \text { Main Circuit } \\ 11-42 \end{gathered}$	ON (closed)	OFF (open)	OFF (open)	OFF (open)	OFF (open)
		$\begin{gathered} \text { Monitor Circuit } \\ \text { (locked) } \\ 51-52 \end{gathered}$	ON (closed)	OFF (open)	OFF (open)	OFF (open)	OFF (open)
		$\begin{gathered} \text { Monitor Circcuit } \\ \text { (locked) } \\ 61-62 \end{gathered}$	ON (closed)	OFF (open)	OFF (open)	OFF (open)	OFF (open)
		$\begin{aligned} & \text { Main Circuit } \\ & 11-42 \end{aligned}$	ON (closed)	OFF (open)	OFF (open)	OFF (open)	OFF (open)
		$\begin{gathered} \text { Monitor Circuit } \\ \text { (locked) } \\ 51-52 \end{gathered}$	ON (closed)	OFF (open)	OFF (open)	OFF (open)	OFF (open)
		$\begin{gathered} \text { Monitor Circuit } \\ \text { (unlocked) } \\ 63-64 \end{gathered}$	OFF (open)	ON (closed)	ON (closed)	ON (closed)	ON (closed)
Solenoid Power A1-A2 (all types)			OFF (de-energized)	ON (energized)	ON (energized)	OFF (de-energized)	OFF (de-energized)

The above contact configuration shows the status when the actuator is inserted and locked.
Main Circuit: Connected to the control circuit of machine drive part, sending interlock signals of the protective door.
Monitor Circuit: Sends monitoring signals of protective door open/closed status or protective door lock/unlock status.
Operation Characteristics (reference)

The operation characteristics shown in the chart above are of the HS9Z-A51. For other actuator types, add 1.3 mm .
The operation characteristics show the contact status when the actuator enters the entry slot of an interlock switch.

$\begin{aligned} & 3 \\ & .0 .3 \\ & 0.3 \\ & 0 \\ & 0 \end{aligned}$	Standard Type - Solenoid Lock Type						\qquad
	Interlock Switch Status		Status 1	Status 2	Status 3	Status 4	
			- Door Closed - Machine ready to operate - Solenoid de-energized	- Door Closed - Machine cannot be operated - Solenoid de-energized	- Door Open - Machine cannot be operated - Solenoid de-energized	- Door Open - Machine cannot be operated - Solenoid energized	
	Door Status						
	Circuit Diagram (HS5E-A7Y)						
	Door		Closed (locked)	Closed (unlocked)	Open	Open	Closed (unlocked)
		${ }_{\text {Main Circuit }}^{11-42}$	ON (closed)	OFF (open)	OFF (open)	OFF (open)	OFF (open)
		$\begin{gathered} \text { Monitor Cirecuit } \\ \text { (door open) } \\ 23-24 \end{gathered}$	OFF (open)	OFF (open)	ON (closed)	ON (closed)	OFF (open)
		$\begin{gathered} \text { Monitior Ciricuit } \\ \text { (unlocecedit } \\ 53-54 \\ \hline \end{gathered}$	OFF (open)	ON (closed)	ON (closed)	ON (closed)	ON (closed)
	HS5E-B7Y	Main Ciraut	ON (closed)	OFF (open)	OFF (open)	OFF (open)	OFF (open)
		$\begin{gathered} \text { Monitor Ciracuit } \\ \text { (loor open) } \\ 23-24 \end{gathered}$	OFF (open)	OFF (open)	ON (closed)	ON (closed)	OFF (open)
		$\begin{gathered} \text { Monitit C Circuit } \\ \text { Ilockectit } \\ 51-52 \end{gathered}$	ON (closed)	OFF (open)	OFF (open)	OFF (open)	OFF (open)
	HS5E-C7Y	Main Ciraut	ON (closed)	OFF (open)	OFF (open)	OFF (open)	OFF (open)
		$\begin{aligned} & \text { Monitor Circuit } \\ & \text { (door closed) } \\ & 21-22 \end{aligned}$	ON (closed)	ON (closed)	OFF (open)	OFF (open)	ON (closed)
	Montio C Cirutit ${ }^{\text {a }}$	$\begin{aligned} & \text { Monitor Circuit } \\ & \text { (unlocked) } \\ & 53-54 \end{aligned}$	OFF (open)	ON (closed)	ON (closed)	ON (closed)	ON (closed)
	HS5E-D7Y	Main Ciricuit	ON (closed)	OFF (open)	OFF (open)	OFF (open)	OFF (open)
		$\begin{aligned} & \text { Monitor Circuit } \\ & \text { (door closed) } \\ & 21-22 \end{aligned}$	ON (closed)	ON (closed)	OFF (open)	OFF (open)	ON (closed)
		$\begin{aligned} & \text { Monitor Circuit } \\ & \text { (locked) } \\ & 51-52 \end{aligned}$	ON (closed)	OFF (open)	OFF (open)	OFF (open)	OFF (open)
	U HSEE-F7Y	$\begin{gathered} \text { Main Circuit } \\ 11-42 \end{gathered}$	ON (closed)	OFF (open)	OFF (open)	OFF (open)	OFF (open)
		$\begin{gathered} \text { Monito Circuit } \\ \text { (door Colsesed) } \\ 21-22 \end{gathered}$	ON (closed)	ON (closed)	OFF (open)	OFF (open)	ON (closed)
		Monitor Clircuit (door closed) 31-32	ON (closed)	ON (closed)	OFF (open)	OFF (open)	ON (closed)
		Main Cirauit	ON (closed)	OFF (open)	OFF (open)	OFF (open)	OFF (open)
		$\begin{aligned} & \text { Monitor Circuit } \\ & \text { (door closed) } \\ & 21-22 \end{aligned}$	ON (closed)	ON (closed)	OFF (open)	OFF (open)	ON (closed)
		$\begin{gathered} \text { Monitior Circuit } \\ \text { (door openit } \\ 33-34 \\ \hline \end{gathered}$	OFF (open)	OFF (open)	ON (closed)	ON (closed)	OFF (open)
		Main Cirauit	ON (closed)	OFF (open)	OFF (open)	OFF (open)	OFF (open)
		$\begin{gathered} \text { Monitor Circuit } \\ \text { (locked) } \\ 51-52 \\ \hline \end{gathered}$	ON (closed)	OFF (open)	OFF (open)	OFF (open)	OFF (open)
		$\begin{gathered} \text { Monitit Ciricuit } \\ \text { (lockectit } \\ \text { 61-62 } \end{gathered}$	ON (closed)	OFF (open)	OFF (open)	OFF (open)	OFF (open)
		Main 11.42 irait	ON (closed)	OFF (open)	OFF (open)	OFF (open)	OFF (open)
		$\begin{gathered} \text { Monitor Circuit } \\ \text { (locked) } \\ 51-52 \end{gathered}$	ON (closed)	OFF (open)	OFF (open)	OFF (open)	OFF (open)
		$\begin{array}{\|c} \hline \text { Monitor Circuit } \\ \text { (unlocked) } \\ 63-64 \end{array}$	OFF (open)	ON (closed)	ON (closed)	ON (closed)	ON (closed)
	Solenoid Power A1-A2 (all types)		ON (energized)	OFF (de-energized)	OFF (de-energized)	ON (energized) ${ }^{2}$	OFF to ON ${ }^{1,2}$

The above contact configuration shows the status when the actuator is inserted and locked. Main Circuit: Connected to the control circuit of machine drive part, sending interlock signals of the protective door.

1: Actuator can be unlocked manually for confirming the door movement before wiring and energizing, and also for emergency situation such as power failure.
2: When the operator is confined in a hazardous zone, the actuator can be unlocked manually by
pressing the rear unlocking button.

Monitor Circuit: Sends monitoring signals of protective door open/closed status or protective door lock/unlock status.

Operation Characteristics (reference)

Main Circuit
Monitor Circuit (door open, NO) Monitor Circuit (door closed, NC) Monitor Circuit (unlocked, NO) Monitor Circuit (locked, NC)

The operation characteristics shown in the chart above are of the HS9Z-A51. For other actuator types, add 1.3 mm .
The operation characteristics show the contact status when the actuator enters the entry slot of an interlock switch.

Dual Safety Circuit Type

Interlock Switch Status			Status 1	Status 2	Status 3	Status 4	Manual Unlock
			- Door Closed - Machine ready to operate - Solenoid de-energized	- Door Closed - Machine cannot be operated - Solenoid energized	- Door Open - Machine cannot be operated - Solenoid energized	- Door Open - Machine cannot be operated - Solenoid de-energized	- Door Closed - Machine cannot be operated - Solenoid de-energized
Door Status							
Circuit Diagram (HS5E-A7Y)							
Door			Closed (locked)	Closed (unlocked)	Open	Open	Closed (unlocked)
	Door Monitor (Actuator inserted	Main Circuit	ON (closed)	OFF (open)	OFF (open)	OFF (open)	OFF (open)
$$	Man Cirout: $-11+12$ Main Circuit: $\Theta 21+22$	$\begin{aligned} & \text { Main Circuit } \\ & 21-52 \end{aligned}$	ON (closed)	OFF (open)	OFF (open)	OFF (open)	OFF (open)
Solenoid Power A1-A2 (all types)			OFF (de-energized)	ON (energized)	ON (energized)	OFF (de-energized)	OFF (de-energized)

The above contact configuration shows the status when the actuator is inserted and locked. Main Circuit: Connected to the control circuit of machine drive part, sending interlock signals of the protective door.

Note: Actuator can be unlocked manually for confirming the door movement before wiring and energizing, and also for emergency situation such as power failure.

Operation Characteristics (reference)

The operation characteristics shown in the chart above are of the HS9Z-A51.
For other actuator types, add 1.3 mm .
The operation characteristics show the contact status when the actuator enters the entry slot of an interlock switch.

$\begin{aligned} & 3 \\ & .0 .3 \\ & 0.3 \\ & 0 \\ & 0 \end{aligned}$	Standard Type - Solenoid	ck Typ					
	Interlock Switch Status		Status 1 - Door Closed - Machine ready to operate - Solenoid de-energized	Status 2 - Door Closed - Machine cannot be operated - Solenoid energized	Status 3 - Door Open - Machine cannot be operated - Solenoid energized	Status 4 - Door Open - Machine cannot be operated - Solenoid de-energized	Manual Unlock - Door Closed - Machine cannot be operated - Solenoid de-energized
	Door Status						
	Circuit Diagram (HS5E-VA4)						
	Door		Closed (locked)	Closed (unlocked)	Open	Open	Closed (unlocked)
		Main Circuit	ON (closed)	ON (closed)	OFF (open)	OFF (open)	ON (closed)
		$\begin{aligned} & \text { Monitor Circuit } \\ & \text { (door open) } \\ & 23-24 \end{aligned}$	OFF (open)	OFF (open)	ON (closed)	ON (closed)	OFF (open)
		$\begin{aligned} & \text { Monitor Circuit } \\ & \text { (door open) } \\ & 41-42 \end{aligned}$	ON (closed)	OFF (open)	OFF (open)	OFF (open)	OFF (open)
		$\begin{gathered} \text { Monitor Circuit } \\ \text { (unlocked) } \\ 53-54 \end{gathered}$	OFF (open)	ON (closed)	ON (closed)	ON (closed)	ON (closed)
		Main ${ }_{\text {cincuit }}^{11-42}$	ON (closed)	ON (closed)	OFF (open)	OFF (open)	ON (closed)
		$\begin{gathered} \text { Monitor Circuit } \\ \text { (door open) } \\ 23-24 \end{gathered}$	OFF (open)	OFF (open)	ON (closed)	ON (closed)	OFF (open)
		$\begin{aligned} & \text { Monitor Circuit } \\ & \text { (door open) } \\ & 41-42 \end{aligned}$	ON (closed)	OFF (open)	OFF (open)	OFF (open)	OFF (open)
		$\begin{gathered} \hline \text { Monitor Circuit } \\ \text { (locked) } \\ 51-52 \end{gathered}$	ON (closed)	OFF (open)	OFF (open)	OFF (open)	OFF (open)
		Main Circuit	ON (closed)	ON (closed)	OFF (open)	OFF (open)	ON (closed)
		$\begin{aligned} & \text { Monitor Circuit } \\ & \text { (door closed) } \\ & 21-22 \end{aligned}$	ON (closed)	ON (closed)	OFF (open)	OFF (open)	ON (closed)
		$\begin{aligned} & \text { Monitor Circuit } \\ & \text { (door open) } \\ & 41-42 \end{aligned}$	ON (closed)	OFF (open)	OFF (open)	OFF (open)	OFF (open)
		$\begin{gathered} \text { Monitor Circuit } \\ \text { (unlocked) } \\ 53-54 \end{gathered}$	OFF (open)	ON (closed)	ON (closed)	ON (closed)	ON (closed)
		Main Circuit	ON (closed)	ON (closed)	OFF (open)	OFF (open)	ON (closed)
	HS5E-VD4	$\begin{aligned} & \text { Monitor Circuit } \\ & \text { (door closed) } \end{aligned}$	ON (closed)	ON (closed)	OFF (open)	OFF (open)	ON (closed)
		$\begin{array}{\|c} \hline \begin{array}{c} \text { Monitor Circuit } \\ \text { (door opent } \\ 41-42 \end{array} \\ \hline \end{array}$	ON (closed)	OFF (open)	OFF (open)	OFF (open)	OFF (open)
	Monitor Circuit: $\begin{array}{l}\text { Monitor Circuit: } \\ \text { Mnnitnr Cirruit }\end{array}$ Θ $21+22$	$\begin{gathered} \text { Monitor Circuit } \\ \text { (locked) } \\ 51-52 \\ \hline \end{gathered}$	ON (closed)	OFF (open)	OFF (open)	OFF (open)	OFF (open)
	Solenoid Power A1-A2 (all types)		OFF (de-energized)	ON (energized)	ON (energized)	OFF (de-energized)	OFF (de-energized)

The above contact configuration shows the status when the actuator is inserted and locked.
Monitor Circuit: Sends monitoring signals of protective door open/closed status or protective door lock/unlock status.

Operation Characteristics (reference)

Note: Actuator can be unlocked manually for confirming the door movement before wiring and energizing, and also for emergency situation such as power failure.

Main Circuit
Monitor Circuit (door open, NO) Monitor Circuit (door closed, NC) Monitor Circuit (unlocked, NO) Monitor Circuit (locked, NC)

The operation characteristics shown in the chart above are of the HS9Z-A51. For other actuator types, add 1.3 mm .
The operation characteristics show the contact status when the actuator enters the entry slot of an interlock switch.

Standard Type - Solenoid Lock Type

Interlock Switch Status			Status 1	Status 2	Status 3	Status 4	Manual Unlock
			- Door Closed - Machine ready to operate - Solenoid energized	- Door Closed - Machine cannot be operated - Solenoid de-energized	- Door Open - Machine cannot be operated - Solenoid de-energized	- Door Open - Machine cannot be operated - Solenoid energized	- Door Closed - Machine cannot be operated - Solenoid de-energized \rightarrow energized
Door Status							
Circuit Diagram (HS5E-VA4)							
Door			Closed (locked)	Closed (unlocked)	Open	Open	Closed (unlocked)
		Main Circuit 11-42	ON (closed)	ON (closed)	OFF (open)	OFF (open)	ON (closed)
		$\begin{gathered} \text { Monitor Circuit } \\ \text { (door open) } \\ 23-24 \end{gathered}$	OFF (open)	OFF (open)	ON (closed)	ON (closed)	OFF (open)
		$\begin{gathered} \text { Monitor Circuit } \\ \text { (door open) } \\ 41-42 \end{gathered}$	ON (closed)	OFF (open)	OFF (open)	OFF (open)	OFF (open)
		$\begin{gathered} \text { Monitor Circuit } \\ \text { (unlocked) } \\ 53-54 \\ \hline \end{gathered}$	OFF (open)	ON (closed)	ON (closed)	ON (closed)	ON (closed)
		Main Circuit 11-42	ON (closed)	ON (closed)	OFF (open)	OFF (open)	ON (closed)
	HS5E-VB7Y	$\begin{gathered} \text { Monitor Circuit } \\ \text { (doror open) } \\ 23-24 \end{gathered}$	OFF (open)	OFF (open)	ON (closed)	ON (closed)	OFF (open)
	$\begin{array}{lll:l} \text { Monitor Circuit } \Theta & & 11 & 12 \\ \text { Monito C Circuit: } & 2 \underline{23} & \frac{12}{24} & 42 \\ \hline \end{array}$	$\begin{gathered} \text { Monitor Circuit } \\ \text { (door open) } \\ 41-42 \end{gathered}$	ON (closed)	OFF (open)	OFF (open)	OFF (open)	OFF (open)
	Monitor Circuit: $\quad 5 \quad 51+52$	$\begin{gathered} \text { Monito Circuit } \\ \text { (lockecri) } \\ 51-52 \\ \hline \end{gathered}$	ON (closed)	OFF (open)	OFF (open)	OFF (open)	OFF (open)
		Main Circuit 11-42	ON (closed)	ON (closed)	OFF (open)	OFF (open)	ON (closed)
	HS5E-VC7Y	Monitor Circuit (door closed) 21-22	ON (closed)	ON (closed)	OFF (open)	OFF (open)	ON (closed)
		$\begin{gathered} \text { Monitor Circuit } \\ \text { (door open) } \\ 41-42 \end{gathered}$	ON (closed)	OFF (open)	OFF (open)	OFF (open)	OFF (open)
	Monitor Circuit: Monitor Circuit: 53 54	$\underset{\substack{\text { Monito Circcuit } \\ \text { (unlocked) } \\ 53-54}}{ }$	OFF (open)	ON (closed)	ON (closed)	ON (closed)	ON (closed)
		Main Circuit 11-42	ON (closed)	ON (closed)	OFF (open)	OFF (open)	ON (closed)
	HS5E-VD7Y	$\begin{gathered} \text { Monitor Circuit } \\ \text { (door closed) } \\ 21-22 \\ \hline \end{gathered}$	ON (closed)	ON (closed)	OFF (open)	OFF (open)	ON (closed)
	Monitor Circuit:	$\begin{gathered} \text { Monitor Circuit } \\ \text { (door open) } \\ 41-42 \end{gathered}$	ON (closed)	OFF (open)	OFF (open)	OFF (open)	OFF (open)
	Monitor Circuit: $\Theta 21+22$ Monitor C Circuit:	Monitor Circuit (locked) $51-52$ 51-52	ON (closed)	OFF (open)	OFF (open)	OFF (open)	OFF (open)
Solenoid Power A1-A2 (all types)			OFF (de-energized)	ON (energized)	ON (energized)	OFF (de-energized)	OFF (de-energized)

> The above contact configuration shows the status when the actuator is inserted and locked. Monitor Circuit: Sends monitoring signals of protective door open/closed status or protective door lock/unlock status.

Operation Characteristics (reference)

Main Circuit

Monitor Circuit (door open, NO) Monitor Circuit (door closed, NC) Monitor Circuit (unlocked, NO Monitor Circuit (locked, NC)

The operation characteristics shown in the chart above are of the HS9Z-A51. For other actuator types, add 1.3 mm .
The operation characteristics show the contact status when the actuator enters the entry slot of an interlock switch.

Operating Instructions

Minimum Radius of Hinged Door

- When using the interlock switch for a hinged door, refer to the minimum radius of doors shown below. For the doors with small minimum radius, use angle adjustable actuators (HS9Z-A53 or HS9Z-A55).

Because deviation or dislocation of hinged door may occur in actual applications, make sure of the correct operation before installation.

HS9Z-A52 Actuator

When the door hinge is on the extension line of the interlock switch surface:

When the door hinge is on the extension line of the actuator mounting surface:

HS9Z-A52 Actuator (w/rubber bushings)

When the door hinge is on the extension line of the interlock switch surface:

When the door hinge is on the extension line of the actuator mounting surface:

Actuator Angle Adjustment

- Using the angle adjustment screw, the actuator angle can be adjusted (refer to the dimensional drawing on pagepage 330).
Adjustable angle: 0 to 20°
- The larger the adjusted angle of the actuator, the smaller the applicable radius of the door opening
- After installing the actuator, open the door. Then adjust the actuator so that its edge can be inserted properly into the actuator entry slot of the interlock switch.
- After adjusting the actuator angle, apply Loctite to the adjustment screw so that the screw will not move.

When using the HS9Z-A53 Angle Adjustable (vertical) Actuator
When the door hinge is on the extension line of the interlock switch surface: 50 mm When the door hinge is on the extension line of the actuator mounting surface: 80 mm

When using the HS9Z-A55 Angle Adjustable (vertical/horizontal) Actuator
When the door hinge is on the extension line of the interlock switch surface: 50 mm Horizontal Swing

Vertical Swing

When the door hinge is on the extension line of the actuator mounting surface: 70 mm

Rotating the Head

The head of the HS5E can be rotated by removing the four screws from the corners of the HS5E head and reinstalling the head in the desired orientation. Before wiring the HS5E, replace the head if necessary. Before replacing the head, turn the manual unlock to the UNLOCK position using the manual unlock key. When reinstalling the head, make sure that no foreign object enters the interlock switch. Tighten the screws tightly, without leaving space between the head and body, otherwise the interlock switch may malfunction.
Recommended tightening torque: 0.9 to $1.1 \mathrm{~N} \cdot \mathrm{~m}$.

Instructions, continued

For Manual Unlocking
 Spring lock type

The HS5E allows manual unlocking of the actuator to pre-check proper door movement before wiring or turning power on, as well as for emergency use such as a power failure.

Solenoid lock type

The solenoid lock type interlock switch normally does not need the manual unlock. However, only when the interlock switch would not release the actuator even though the solenoid is de-energized, the interlock switch can be unlocked manually. Unlock the interlock switch manually only when the solenoid is de-energized. Do not unlock the interlock switch manually when the solenoid is energized.

When locking or unlocking the interlock switch manually, turn the key fully using the manual unlock key supplied with the interlock switch.
Using the interlock switch with the key not fully turned (less than 90°) may cause damage to the interlock switch or operation failures (when manually unlocked, the interlock switch will keep the main circuit disconnected and the door unlocked).
Do not apply excessive force to the manual unlock, otherwise the manual unlock will become damaged.
Do not leave the manual unlock key attached to the interlock switch during operation. This is dangerous because the interlock switch can always be unlocked while the machine is in operation.

Installing the Rear Unlocking Button

After installing the interlock switch on the panel, place the rear unlocking button (supplied with the switch) on the push rod on the back of the interlock switch, and fasten the button using the M3 sems screw. Rear unlocking button can be installed alone when the total thickness of mounting frame and panel is 6 mm or less. When the total thickness of mounting frame, panel, and mounting plate is 23 to 43 mm , use the rear unlocking button kit (HS9Z-FL53 or HS9Z-FL54) sold separately.

Cables

- When bending the cable during wiring, make sure that the cable radius is kept at 30 mm minimum.
- Solenoid has polarity. Be sure of the correct polarity when wiring

Safety Precautions

Install the rear unlocking button kit in the correct direction as shown below. Do not install the kit in incorrect directions, otherwise malfunction will be caused.

Correct

Incorrect

Do not apply strong force exceeding $100 \mathrm{~m} / \mathrm{s} 2$ to the interlock switch while the rear unlocking button is not pressed, otherwise malfunction will be caused.

Manual Unlocking using the Rear Unlocking Button

The rear unlocking button is used by the operator confined in a hazardous area for emergent escape.

How to operate

When the rear unlocking button is pressed, the interlock switch is unlocked and the door can be opened.
To lock the interlock switch, pull back the button.
When the button remains pressed, the interlock switch cannot be locked even if the door is closed, and the main circuit remains open.

Recommended Tightening Torque

- HS5E interlock switch: 1.8 to 2.2 N.m (four M4 screws) (Note)
- Rear unlocking button: 0.5 to $0.7 \mathrm{~N} \cdot \mathrm{~m}$
- Rear unlocking button kit: 4.8 to $5.2 \mathrm{~N} \cdot \mathrm{~m}$ (M5 screw)
- Actuators

HS9Z-A51:	1.8 to $2.2 \mathrm{~N} \cdot \mathrm{~m}$ (two M4 screws)
HS9Z-A52:	0.8 to $1.2 \mathrm{~N} \cdot \mathrm{~m}$ (two M4 Phillips screws)

HS9Z-A51A/A52A: 1.0 to $1.5 \mathrm{~N} \cdot \mathrm{~m}$ (two M4 screws)
HS9Z-A53: $\quad 4.5$ to $5.5 \mathrm{~N} \cdot \mathrm{~m}$ (two M6 screws)
HS9Z-A55: $\quad 1.0$ to $1.5 \mathrm{~N} \cdot \mathrm{~m}$ (two M4 screws)
Note: The above recommended tightening torque of the mounting screws are the values with hex socket head bolts. When other screws are used and tightened to a smaller torque, make sure that the screws do not become loose after mounting.

Instructions, continued

Wire Identification

Wires can be identified by color and a white line printed on the wire.

- HS5E-V: Wires of gray and gray/white insulation cannot be used.
- HS5E-DD: Wires of brown and brown/white insulation cannot be used.

No.	Insulation	No.	Insulation	No.	Insulation	No.	Insulation
1	White	4	Blue	7	Blue/White	10	Pink/White
2	Black	5	Brown/White	8	Orange/White	11	Gray
3	Brown	6	Orange	9	Pink	12	Gray/White

Terminal Number Identification

- When wiring, the terminal number of each contact can be identified by wire color.
- The following table shows the identification of terminal numbers.

Type	Circuit Diagram
HS5E-VA	
HS5E-VB	Monitor Circuit: Blue \qquad 12 Blue/White Pink 4 \qquad 42 Pink/White Monitor Circuit: Orange 23 24 Orange/White Monitor Circuit: Brown 51 52 Brown/White
HS5E-VC	
HS5E-VD	Monitor Circuit: Blue \rightarrow 11 12 Blue/White Pink 41 42 Pink/White Monitor Circuit: Orange \rightarrow $21+1$ 22 Orange/White Monitor Circuit: Brown 51 52 Brown/White

The above contact configuration shows the status when the actuator is inserted and locked.

When wiring, cut unnecessary wires such as the dummy insulation (white) and any unused wires.

HS1E Full Size Solenoid Locking Switches

Key features:

- Plastic Housing: Lightweight
- 1500N locking retention force
- Available with a red or green indicator
- Choose from 4 circuit configurations
- Flexible Installation: The actuator can be accessed from two directions
- Ease of Wiring: M3.5 termination screws

Actuator Keys \& Accessories

Appearance	Part Number	Description
$\int \gg$	HS9Z-A1	Straight Actuator
	HS9Z-A2	Right-angle Actuator
	HS9Z-A3	Adjustable Actuator
	HS9Z-T1	Key Wrench (included with switch)
	HS9Z-P1	Conduit Opening Plug (G1/2)

Part Numbers (Mechanical Spring Lock Only)

Contact Configuration		LED	Standard	Manual Unlock Key
Main circuit: 1NC + 1NC Monitor circuit: 1NO/1NO		None	HS1E-40R	HS1E-40KR
		Green	HS1E-44R-G	HS1E-44KR-G
		Red	HS1E-44R-R	HS1E-44KR-R
Main circuit: $1 \mathrm{NC}+1 \mathrm{NC}$ Monitor circuit: 1NO		None	HS1E-140R	HS1E-140KR
		Green	HS1E-144R-G	HS1E-144KR-G
		Red	HS1E-144R-R	HS1E-144KR-R
Main circuit: $1 \mathrm{NC}+1 \mathrm{NC}$ Monitor circuit: 1NC + 1NC		None	HS1E-240R	HS1E-240KR
		Green	HS1E-244R-G	HS1E-244KR-G
		Red	HS1E-244R-R	HS1E-244KR-R
Main circuit: 1NC + 1NC Monitor circuit: 1 NC		None	HS1E-340R	HS1E-340KR
		Green	HS1E-344R-G	HS1E-344KR-G
		Red	HS1E-344R-R	HS1E-344KR-R

1. Key wrench for TORX screws (HSgZ-T1) is supplied with the interlock switch.
2. Actuator is not supplied with the interlock switch, and must be ordered separately.
3. Manual unlock key is included with the interlock switch.
4. TORX is a registered trademark of Camcar Textron.

Specifications

Conforming to Standards
Operating Temperature
Storage Temperature
Relative Humidity
Altitude
Rated Insulation Voltage（Ui）
Impulse Withstand Voltage（Uimp）

Insulation Resistance
（measured with 500V DC megger）
Electric Shock Protection
Pollution Degree
Degree of Protection

Vibration	Operating Extremes

Resistance Damage Limits

Shock Resistance
Actuator Retention Force
Actuator Operating Speed
Direct Opening Travel
Direct Opening Force
Thermal Current（Ith）
Contact Gap
Operating Frequency
Mechanical Life
Electrical Life
Conditional Short－circuit Current
Recommended Short Circuit Protection
Operating Voltage

Current

Contact Ratings

Rated Operating Current（le）

EN1088，IEC60947－5－1，EN60947－5－1（TUV），ISO14119，GS－ET－19（BG），UL508，CSA C22．2 No．14， GB14048．5（CCC approval），IEC60204－1，EN60204－1（applicable standards for use）
-20 to $+40^{\circ} \mathrm{C}$（no freezing）
-40 to $+80^{\circ} \mathrm{C}$
40－85\％RH（no condensation）
2，000m maximum
300 V （between LED or solenoid and ground：60V）
4 kV （between LED or solenoid and ground： 2.5 kV ）
Between live and dead metal parts： $100 \mathrm{M} \Omega$ minimum
Between live metal part and ground： $100 \mathrm{M} \Omega$ minimum
Between live metal parts：$\quad 100 \mathrm{M} \Omega$ minimum
Between terminals of the same pole： $100 \mathrm{M} \Omega$ minimum
Class II（according to IEC61140）
3 （IEC60947－5－1）
IP67（IEC60529）
10 to 55 Hz ，minimum（amplitude 0.35 mm ）
$50 \mathrm{~m} / \mathrm{sec}^{2}$（approx．5G）
$1,000 \mathrm{~m} / \mathrm{sec}^{2}$（approx．100G）
$1,500 \mathrm{~N}$ minimum（per GS－ET－19）
0.05 to $1.0 \mathrm{~m} / \mathrm{s}$

11 mm minimum
20N minimum
Main circuit：10A，Auxiliary circuit：3A
Main circuit： 1.7 mm min．，Auxiliary circuit： 1.2 mm min ．
900 operations／hour max．
1，000，000 operations min．（at full rated load）
900 ops／hr（AC－12／250V，6A）
100，000 operations（rated load）
100A（per IEC60947－5－1）
250V，10A fuse（Type D01 based on IEC60269－1，60269－2）
24 V DC
292mA（initial value）
102Ω（at $20^{\circ} \mathrm{C}$ ）
20.4 V maximum（at $20^{\circ} \mathrm{C}$ ）
2.4 V minimum（at $20^{\circ} \mathrm{C}$ ）
26.4 V max（continuous）

Class F
24V DC
10 mA
LED lamp
Red or Green
500 g

Operating Voltage（Ue）			30V	125 V	250V
霛苟	AC	Resistive load（AC12） Inductive load（AC15）	$\begin{aligned} & 10 \mathrm{~A} \\ & 10 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 10 \mathrm{~A} \\ & 5 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 6 \mathrm{~A} \\ & 3 \mathrm{~A} \end{aligned}$
	DC	Resistive load（DC12） Inductive load（DC13）	$\begin{aligned} & 6 \mathrm{~A} \\ & 3 \mathrm{~A} \end{aligned}$	$\stackrel{-}{0.9 \mathrm{~A}}$	
	AC	Resistive load（AC12） Inductive load（AC15）		$3 \mathrm{~A}$	$\begin{aligned} & 3 A \\ & 3 A \end{aligned}$
	DC	Resistive load（DC12） Inductive load（DC13）	$3 \mathrm{~A}$	$\frac{-}{0.9 \mathrm{~A}}$	－

Application Examples and Circuit Diagrams

HS1E-4 (Main Circuit: 1NC-1NC, Auxiliary Circuit: 1NO/1NO)

	Status 1	Status 2	Status 3	Status 4	Unlocked Manually
Switch/Door Status	Door Closed Machine ready to operate Solenoid de-energized	Door Closed Machine cannot be started Solenoid de-energized	Door Opened Machine cannot be started Solenoid energized	Door Opened Machine cannot be started Solenoid de-energized	Door Closed Machine cannot be started Solenoid de-energized
Door					
Circuit Diagram	Contacts are linked to the solenoid mechanically				
Main Circuit	3-4: Closed	3-4: Open	3-4: Open	3-4: Closed	3-4: Open
Aux. Circuit	1-2: Open	1-2: Closed	1-2: Closed	1-2: Closed	1-2: Closed
Solenoid	5-6: Power OFF	5-6: Power ON	5-6: Power ON	5-6: Power OFF	5-6: Power OFF

HS1E-14 (Main Circuit: 1NC-1NC, Auxiliary Circuit: 1NO)

	Status 1	Status 2	Status 3	Status 4	Unlocked Manually
Switch/Door Status	Door Closed Machine ready to operate Solenoid de-energized	Door Closed Machine cannot be started Solenoid energized	Door Opened Machine cannot be started Solenoid energized	Door Opened Machine cannot be started Solenoid de-energized	Door Closed Machine cannot be started Solenoid de-energized
Door					
Circuit Diagram	Contacts are linked to the solenoid mechanically				
Main Circuit	3-4: Closed	3-4: Open	3-4: Open	3-4: Open	3-4: Open
Aux. Circuit	1-2: Open	1-2: Open	1-2: Closed	1-2: Closed	1-2: Open
Solenoid	5-6: Power OFF	5-6: Power ON	5-6: Power ON	5-6: Power OFF	5-6: Power OFF

1. Main Circuit: used to enable the machine to start only when the main circuit is closed.
2. Auxiliary Circuit: used to indicate whether the machine circuit or door is open or closed.
3. Terminals 7 and 8 are used for the LED indicator, and are isolated from solenoid and door status.

Application Examples and Circuit Diagrams, continued

HS1E-24 (Main Circuit: 1NC+1NC, Auxiliary Circuit: 1NC+NC)

	Status 1	Status 2	Status 3	Status 4	Unlocked Manually
Switch/Door Status	Door Closed Machine ready to operate Solenoid de-energized	Door Closed Machine cannot be started Solenoid energized	Door Opened Machine cannot be started Solenoid energized	Door Opened Machine cannot be started Solenoid de-energized	Door Closed Machine cannot be started Solenoid de-energized
Door					
Circuit Diagram	Contacts are linked to the solenoid mechanically				
Main Circuit	3-4: Closed	3-4: Open	3-4: Open	3-4: Open	3-4: Open
Aux. Circuit	1-2: Closed	1-2: Open	1-2: Open	1-2: Open	1-2: Open
Solenoid	5-6: Power OFF	5-6: Power ON	5-6: Power ON	5-6: Power OFF	5-6: Power OFF

HS1E-34 (Main Circuit: 1NC+1NC, Auxiliary Circuit: 1NC)

	Status 1	Status 2	Status 3	Status 4	Unlocked Manually
Switch/Door Status	Door Closed Machine ready to operate Solenoid de-energized	Door Closed Machine cannot be started Solenoid energized	Door Opened Machine cannot be started Solenoid energized	Door Opened Machine cannot be started Solenoid de-energized	Door Closed Machine cannot be started Solenoid de-energized
Door					
Circuit Diagram	Contacts are linked to the solenoid mechanically	Contacts are linked to the solenoid mechanically	Contacts are linked to the solenoid mechanically $8 \ominus$	Contacts are linked to the solenoid mechanically	Contacts are linked to the solenoid mechanically
Main Circuit	3-4: Closed	3-4: Open	3-4: Open	3-4: Open	3-4: Open
Aux. Circuit	1-2: Closed	1-2: Closed	1-2: Open	1-2: Open	1-2: Closed
Solenoid	5-6: Power OFF	5-6: Power ON	5-6: Power ON	5-6: Power OFF	5-6: Power OFF

1. Main Circuit: used to enable the machine to start only when the main circuit is closed.
2. Auxiliary Circuit: used to indicate whether the machine circuit or door is open or closed.
3. Terminals 7 and 8 are used for the LED indicator, and are isolated from solenoid or door status

Dimensions (mm)
HS1E with indicator - using 1500N operating force

Note: Plug the unused actuator entry slot using the slot plug supplied with the interlock switch.

Accessories

Straight Actuator (mainly for sliding doors) HS9Z-A1

Right-angle Actuator (mainly for hinged doors) HS9Z-A2

- When using the interlock switch for a hinged door, refer to the minimum radius of doors shown below. For the doors with small minimum radius, use angle adjustable actuators (HS9ZA3 or HS9Z-A3S).

Note: Because deviation or dislocation of hinged door may occur in actual applications, make sure of the correct operation before installation.

HS9Z-A2 Actuator

- When the door hinge is on the extension line of the interlock switch surface:

- When the door hinge is on the extension line of the actuator mounting surface:

When using the HS9Z-A3 Angle Adjustable (vertical) Actuator

- When the door hinge is on the extension line of the interlock switch surface:

- When the door hinge is on the extension line of the actuator mounting surface:

HS1C Full Size Solenoid Locking Switches

Key features:

- Rugged aluminum die-cast housing
- 1500N locking retention force
- Flexible Installation: The actuator can be accessed from two directions
- Select from four different circuit configurations
- IP67

HS1C Series Functionality

TORX is a registered trademark of Camcar Textron.

Part Numbers (Mechanical Spring Lock Only)

\begin{tabular}{|c|c|c|c|c|c|}
\hline Contact Configuration \& Indicator LED \& Part Number \& Contact Configuration \& Indicator LED \& Part Number

\hline \& Green

Red \& HS1C-R44R-G
HS1C-R44R-R \& \& Green

Red \& HS1C-R244R-G
HS1C-R244R-R

\hline \& Green

Red \& HS1C-R144R-G
HS1C-R144R-R \& \& Green

Red \& HS1C-R344R-G
HS1C-R344R-R

\hline
\end{tabular}

Actuator Keys \& Accessories

Specifications, con't

Solenoid Unit	Operating Voltage	24 V DC (100\% duty cycle)
	Current	415 mA (initial value)
	Coil Resistance	58Ω (at $20^{\circ} \mathrm{C}$)
	Energizing Voltage	Rated voltage $\times 85 \%$ maximum (at $20^{\circ} \mathrm{C}$)
	De-energizing Voltage	Rated voltage $\times 10 \%$ minimum (at $20^{\circ} \mathrm{C}$)
	Continuous Applicable Voltage	Rated voltage x 110\%
	Insulation Class	Class B
Indicator	Operating Voltage	24V DC
	Current	10 mA
	Light Source	LED lamp
	Lens Color	Red or Green
Weight (approx.)		660 g

Contact Ratings

Rated Operating Current (le)	Operating Voltage (Ue)			30 V	125V	250 V
	空苟	AC	Resistive load (AC12)	10A	10A	6A
			Inductive load (AC15)	10A	5A	3A
		DC	Resistive load (DC12)	6A	-	-
			Inductive load (DC13)	3A	0.9A	-
		AC	Resistive load (AC12)	-	3A	3A
			Inductive load (AC15)	-	-	3A
		DC	Resistive load (DC12)	3A	-	-
			Inductive load (DC13)	-	0.9A	-

Dimensions (mm)
HS1C-R44R-* - using the straight actuator (HS9Z-A1)

HS1C-R44R-* - using the Right-angle actuator (HS9Z-A2)

Accessories

Straight Actuator (mainly for sliding doors)

 HS9Z-A1

Right-angle Actuator (mainly for hinged doors) HS9Z-A2

Adjustable Actuator

- The actuator angle is adjustable (0° to 20°) for hinged doors.
- The minimum radius of the door opening can be as small as 100 mm .

For HS1/HS2 Series (HS9Z-A3)

Applicable Crimping Terminals

- (Refer to the Crimping Terminal 1 or 2 shown in the drawing below.)
- HS1C

Terminals No. 1 to 6: Use solid or stranded wires only (crimping terminals not applicable).
Terminals No. 7 and 8: Crimping Terminal 1

Crimping Terminal 1
Use an insulation tube on the crimping terminal.

- HS1B

Ground Terminal: Crimping Terminal 2
Other Terminals: Crimping Terminal 1
HS2B, HS5B, and HS1E
Crimping Terminal 1
Ground Terminal: Crimping Terminal 2

Crimping Terminal 2

HS1L Interlock Switches with Solenoid

Key features:

- 3,000N locking retention force
- LED indicator
- Energy-efficient solenoid
- 6 contacts with easy-to-wire terminations
- M3 terminal screws for easy wiring

Part Numbers

Mechanical Spring Lock (power solenoid to unlock)			
Contact Configuration	Con- duit Size	LED	Part Number

Solenoid Lock (Remove Power to Unlock)				
Contact Configuration		Conduit Size	LED	Part Number
	Lock Monitor (Solenoid ON) A2 A) $_{\text {(+) }}^{\text {(-) }}$	G1/2	Red	HS1L-R7Y4KMSR-R
			Green	HS1L-R7Y4KMSR-G
Main circuit: Θ 12 Monitor circuit: Θ 21 22 Monitor circuit: 33 34 Monitor circuit: 1 Monitor circuit:		PG13.5	Red	HS10h yL-R7Y4KMSRP-R
			Green	HS1L-R7Y4KMSRP-G
	51.52	M20	Red	HS1L-R7Y4KMSRM-R
	61- 62		Green	HS1L-R7Y4KMSRM-G
Main circuit: Θ 11 12 Main circuit: $\Theta 21$ 22 Monitor circuit: 33 34 Monitor circuit:	'	G1/2	Red	HS1L-DQ7Y4KMSR-R
	1		Green	HS1L-DQ7Y4KMSR-G
	$\begin{array}{r} 41 * \\ 51 \div \end{array}$	PG13.5	Red	HS1L-DQ7Y4KMSRP-R
			Green	HS1L-DQ7Y4KMSRP-G
	,	M20	Red	HS1L-DQ7Y4KMSRM-R
	'		Green	HS1L-D07Y4KMSRM-G
Main circuit: Θ 12 Main circuit: 21 22 Monitor circuit: 31 32 Monitor circuit: 1	'	G1/2	Red	HS1L-DT7Y4KMSR-R
			Green	HS1L-DT7Y4KMSR-G
	41* 42	PG13.5		
	$51+52$		Red	HS1L-DT7Y4KMSRP-R
			Green	HS1L-DT7Y4KMSRP-G
		M20	Red	HS1L-DT7Y4KMSRM-R
			Green	HS1L-DT7Y4KMSRM-G

[^3]2. Contact configuration shows the contact status when actuator is inserted and solenoid on for solenoid lock.
3. Actuator keys are not supplied with the interlock switch and must be ordered separately

4 Manual unlock key is included with the interlock switch.
5. Standard stock items in bold

Actuator Keys \& Accessories (order separately)

Appearance	Part Number	Description	Appearance	Part Number	Description
$\rightleftharpoons-2$	HS9Z-A1S	Straight Actuator	\sim	HS9Z-T1	Key Wrench (included with switch)
	HS9Z-A2S	L-shaped Actuator		HS9Z-P1	Conduit Opening Plug (G1/2)
	HS9Z-A3S	Angle Adjustable Actuator (vertical operation only)			

Specifications

Conforming to Standards		ISO14119, IEC60947-5-1. EN60947-5-1 (TÜV approval), GS-ET-19 (TÜV approval). UL508, CSA C22.2 No. 14 IEC60204-1/EN60204-1 (applicable standards for use)
Operating Temperature		-20 to $+55^{\circ} \mathrm{C}$ (no freezing)
Storage Temperature		-40 to $+80^{\circ} \mathrm{C}$ (no freezing)
Relative Humidity		45 to 85\% (no condensation)
Rated Insulation Voltage (Ui)		300 V
Overvoltage Category		III
Electric Shock Protection		Class II (IEC 61140)
Degree of Protection		IP67 (IEC 60529)
Shock Resistance		Damage limits: $1000 \mathrm{~m} / \mathrm{s}^{2}$
Actuator Retention Force		3000N minimum (GS-ET-19)
Actuator Operating Speed		0.05 to $1.0 \mathrm{~m} / \mathrm{s}$
Direct Opening Travel		11 mm minimum
Direct Opening Force		50 N minimum
Thermal Current (Ith)		10A
Operating Frequency		900 operations per hour
Mechanical Life		1,000,000 operations minimum (GS-ET-19)
Electrical Life		100,000 operations minimum (AC-15 3A/250V) 1,000,000 operations minimum (24 V AC/DC, 100mA) (operating frequency 900 operations per hour)
Solenoid Unit	Rated Operating Voltage	24 V DC (100% duty cycle)
	Rated Current	200 mA (initial value)
Indicator	Rated Operating Voltage	24 V D
	Rated Current	10 mA
	Light Source	LED
	Illumination Color	Green (G), Red (R)
Weight (approx.)		450g (HS1L-DQ44)

Contact Ratings

Rated Operating Current (I_{e})	Rated Voltage (U_{e})		30 V	125 V	250 V
	AC	Resistive load (AC12)	10A	10A	6A
		Inductive load (AC15)	10A	5A	3A
	DC	Resistive load (DC12)	8A	2.2A	1.1A
		Inductive load (DC13)	4A	0.9A	0.6A

Dimensions (mm) and Mounting Hole Layouts

Interlock switch when using straight actuator (HS9Z-A1S)

Actuator Entry Slot (Vertical to mounting panel)

Actuator Entry Slot (Horizontal to mounting pane

Slot Plug
(Supplied
(Note)

Interlock switch when using L-shaped actuator (HS9Z-A2S)

Actuator mounting
reference position

Interlock Switch Mounting Hole Layout

Note: Plug the unused actuator entry slot using the slot plug supplied with the interlock switch.

* Install the interlock switch using four mounting screws when using the actuator entry slot vertical to the mounting panel, and three mounting screws when using the actuator entry slot horizontal to the mounting panel.

Straight Actuator (HS9Z-A1S)

Angle Adjustable (vertical) Actuator (HS9Z-A3S)

L-shaped Actuator (HS9Z-A2S)

The actuator cover and the actuator stop film are supplied with the actuator and used when adjusting the actuator position. Remove them after the actuator position is determined.

HS5E-K Key Locking Safety Interlock Switches

Key features:

- Head removal detection circuitry.
- High-security pin tumbler key types are used. Sixteen types of key numbers are available, see page 356.
- Available with rear unlocking button for emergency escape.
- Accessory available for aluminum frame mounting.
- Gold-plated contacts.
- The locking strength is 1400 N minimum. (GS-ET-19)
- The head orientation can be rotated, allowing 8 different actuator entries.
- Metal actuator entry slot ensures high durability.
- Actuator with rubber bushings alleviates the impact of the actuator entry slot.
- Environmentally-friendly. RoHs directive compliant.
- Double insulation structure. No need for grounding.
- Compact body: $35 \times 40 \times 146 \mathrm{~mm}$

c $\boldsymbol{N}_{\text {us }}$ (

A single key used for interlock switch and selector switch prevents itself from being left in the lock.

Hostage key ensures that the person holding the key is not locked inside the hazardous area.

HS5E-K key interlock switches use a key to lock and unlock a door of safeguard. When the key is taken into a dangerous area, the interlock switch cannot be locked and the machine does not operate. Therefore, workers can be prevented from being locked in a dangerous area, and the system is prevented from restarting unexpectedly. Furthermore, because the key used for HS5E-K key interlock switches can also be used for HW series key selector switches (pin tumbler type), switching operation modes of systems and door unlocking can be performed using a single key. 16 types of key numbers are available, so that each system can have its own key, and a higher level of safety can be achieved.

Spring Lock Type (Power Solenoid to VA Lock)

Actuator Keys \& Accessories

Appearance	Part Number	Description	Appearance	Part Number	Description	Appearance	Part Number	Description
∞	HS9Z-A51	Straight		HS9Z-A55	Angle adjustable horizontal/vertical operation ${ }^{1}$		HS9Z-SP51	Mounting Plate (allows easy mounting to aluminum frames)
	HS9Z-A52	Right-angle		HS9Z-A5P	Plug Actuator (allows switch to be used as interlock plug unit)		HS9Z-T3	Manual unlock key (long type - metal)
	HS9Z-A53	Angle adjustable vertical operation		HS9Z-PH5	Padlock Hasp (prevents unauthorized insertion of actuator)		HS9Z-SH5	Sliding Actuator

1. The actuator tensile strength is 500 N minimum.
2. Actuators are not included and must be included separately.

Specifications

$\begin{aligned} & 3 \\ & \text { 3 } \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	Standard Type - Solenoid Lock Type						
	Interlock Switch Status			Status 1	Status 2	Status 3	Manual Unlock
				- Door Closed - Machine ready to operate - Solenoid energized	- Door Closed - Machine cannot be operated - Solenoid de-energized	- Door Open - Machine cannot be operated - Solenoid de-energized	- Door Closed - Machine cannot be operated - Solenoid de-energized energized
	Door Status						
	Circuit Diagram (HS5E-KVA)						
	Door			Closed (locked)	Closed (unlocked)	Open	Closed (unlocked)
	듣 HS5E-KVA		$\begin{gathered} \text { Main Circuit } \\ \text { (door closed) } \\ 11-12 \end{gathered}$	ON (closed)	ON (closed)	OFF (open)	ON (closed)
			Monitor Circuit (door open) 23-24	OFF (open)	OFF (open)	ON (closed)	OFF (open)
			Monitor Circuit (locked) 41-42	ON (closed)	OFF (open)	OFF (open)	ON (closed)
			Monitor Circuit (unlocked) 53-54	OFF (open)	ON (closed)	ON (closed)	ON (closed)
	$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & 0 \\ & \stackrel{\rightharpoonup}{c} \end{aligned}$		Main Circuit (door closed) 11-12	ON (closed)	ON (closed)	OFF (open)	ON (closed)
	$\begin{aligned} & \bar{\infty} \\ & \dot{c} \\ & \sum_{0} \end{aligned}$	HS5E-KVD	Monitor Circuit (door open) 21-22	ON (closed)	ON (closed)	OFF (open)	OFF (open)
	$\stackrel{\sim}{2}$	HSSE-KVD	Monitor Circuit (locked) 41-42	ON (closed)	OFF (open)	OFF (open)	OFF (open)
			Monitor Circuit (unlocked) 51-52	ON (closed)	OFF (open)	OFF (open)	OFF (open)

Note: When the operator is confined in a hazardous area, the actuator can be unlocked manually by pressing the rear unlocking button, which should be accessed easily by the operator. The above contact configuration shows the status when the actuator is inserted and the switch is locked.
Monitor circuit: Sends monitoring signals of protective door open/closed status or protective door lock/unlock status.

Operation Characteristics (reference)

Main Circuit

Monitor Circuit (door open, NO) Monitor Circuit (door closed, NC) Monitor Circuit (unlocked, NO) Monitor Circuit (locked, NC)

The operation characteristics shown in the chart above are of the HS9Z-A51. For other actuator types, add 1.3 mm .
The operation characteristics show the contact status when the actuator enters the entry slot of an interlock switch.

Dimensions (mm) and Mounting Hole Layouts
HS5E-K \square
When using Horizontal Mounting / Straight Actuator (HS9z-A51)

When using Vertical Mounting / Right-angle Actuator (HS9Z-A52)

HS5E-K ${ }^{\text {Operation }}$ Key ((suppear Unlocking Button Type)
When using Horizontal Mounting / Straight Actuator (HS9Z-A51)

Dimensions and Mounting Hole Layouts, continued

Straight Actuator (HS9Z-A51)

Straight Actuator w/Rubber Bushings (HS9Z-A51A)

- The mounting center distance is set to 12 mm at factory. When 20 -mm distance is required, adjust the distance by moving the rubber bushings.
The actuator has flexiblity to the direction indicated by the arrows. When $20-\mathrm{mm}$ distance is selected, the actuator swings vertically.
- Actuator Mounting Hole Layout

Washer (supplied with the switch)

Straight type (with rubber bushings) Right-angle type (with rubber bushings)

Note: Mounting centers can be widened to 20 mm by moving the rubber bushings.

Angle Adjustable Actuator (Vertical) (HS9Z-A53)

Actuator Orientation

The orientation of actuator swing (horizontal/vertical) can be changed using the orienting insert (white plastic) installed on the back of the actuator. Do not lose the orientating insert, otherwise the actuator will not swing properly.

Right-angle Actuator (HS9Z-A52)

Actuator Stop (supplied with the actuator) (Note)

Right-angle Actuator w/Rubber Bushings (HS9Z-A52A)

- When the mounting center distance is set to 12 mm , the actuator has flexibility both - Wertically and horizontally. 20 mm , the actuator swings vertically. Adjust the distance by moving the rubber bushings.

Angle Adjustable Actuator (Horizontal/Vertical) (HS9Z-A55)

Sliding Actuator (HS9Z-SH5)

Plug Actuator (HS9Z-A5P)

Mounting Plate (HS9Z-SP51)

Drilling Rear Unlocking Button Hole

When installing the HS5E- $\square 44 \mathrm{~L} \square-\mathrm{G}$ (rear unlocking button type), provide a rear unlocking button hole on the HS9Z-SP51.

Material: Anodized aluminum A6063
Weight: Approx. 180g
Rear Unlocking Button Kit (HS9Z-FL5 \square)

Example:
When mounted on a $\square 30 \mathrm{~mm}$ frame using the mounting plate above (HS9Z-SP51), select HS9Z-FL54 since the mounting part thickness (X) is $40(X=10+30=40)$.

Operating Instructions

Minimum Radius of Hinged Door

- When using the interlock switch for a hinged door, refer to the minimum radius of doors shown below. For the doors with small minimum radius, use angle adjustable actuators (HS9Z-A53 or HS9Z-A55).

Because deviation or dislocation of hinged door may occur in actual applications, make sure of the correct operation before installation.

HS9Z-A52 Actuator

When the door hinge is on the extension line of the interlock switch surface:

When the door hinge is on the extension line of the actuator mounting surface:

HS9Z-A52 Actuator (w/rubber bushings)

When the door hinge is on the extension line of the interlock switch surface:

When the door hinge is on the extension line of the actuator mounting surface:

Actuator Angle Adjustment (vertical/horizontal)

- Using the angle adjustment screw, the actuator angle can be adjusted (refer to the dimensional drawing on page 359).
Adjustable angle: 0 to 20°
- The larger the adjusted angle of the actuator, the smaller the applicable radius of the door opening
- After installing the actuator, open the door. Then adjust the actuator so that its edge can be inserted properly into the actuator entry slot of the interlock switch.
- After adjusting the actuator angle, apply Loctite to the adjustment screw so that the screw will not move.

When using the HS9Z-A53 Angle Adjustable (vertical) Actuator
When the door hinge is on the extension line of the interlock switch surface: 50 mm When the door hinge is on the extension line of the actuator mounting surface: 80 mm

When using the HS9Z-A55 Angle Adjustable (vertical/horizontal) Actuator
When the door hinge is on the extension line of the interlock switch surface: 50 mm Horizontal Swing

Vertical Swing

When the door hinge is on the extension line of the actuator mounting surface: 70 mm

Rotating the Head

The head of the HS5E can be rotated by removing the four screws from the corners of the HS5E head and reinstalling the head in the desired orientation. Before wiring the HS5E, replace the head if necessary. Before replacing the head, turn the manual unlock to the UNLOCK position using the manual unlock key. When reinstalling the head, make sure that no foreign object enters the interlock switch. Tighten the screws tightly, without leaving space between the head and body, otherwise the interlock switch may malfunction.
Recommended tightening torque: 0.9 to $1.1 \mathrm{~N} \cdot \mathrm{~m}$.

Instructions, continued

Head Removal Detection Circuitry

- Only the lock monitor circuit 41-42 turns off (open) when the head is removed, such as when the head is rotated. The other monitor circuit 51-52 turns ON (close). Be sure to connect the lock monitor circuit (41-42) to a safety circuit.
- When connecting the HS5E-K to a safety circuit, connect the door monitor circuits (11-12) Θ and the lock monitor circuits (41-42) Θ in series. (GS-ET-19)
- When rotating the head, make sure that the interlock switch is not wired or that the key position is in the UNLOCK position.

Key

Follow the instructions below to avoid operating failures and damage.

- Insert the key completely.
- Do not remove or insert the key while turning the key.
- Other than the standard key number (500), 15 types of key numbers are available. Use a key with the same number as the number on the cylinder.
- Do not apply excessive force when turning the key. Otherwise operating failures and damage may occur.
- Do not turn the key to the LOCK side while the actuator is removed (door open). Otherwise, operating failures and breakdowns may occur.

Installing the Rear Unlocking Button (HS5E-K $\square \mathrm{L}$)

- After installing the interlock switch on the panel, place the rear unlocking button (supplied with the switch) on the push rod on the back of the interlock switch, and fasten the button using the screw supplied with the switch. Rear unlocking buttons can be installed alone when the total thickness of mounting frame and panel is 6 mm or less. When the total thickness of mounting frame, panel, and mounting plate is 23 to 53 mm , use the rear unlocking button kit (HS9Z-FL53, HS9Z-FL54, or HS9Z-FL55) sold separately.

- Rear unlocking button kit: 4.8 to $5.2 \mathrm{~N} \cdot \mathrm{~m}$ (M5 screw)
- Actuators

HS9Z-A51: $\quad 1.8$ to $2.2 \mathrm{~N} \cdot \mathrm{~m}$ (two M4 screws) HS9Z-A52: $\quad 0.8$ to $1.2 \mathrm{~N} \cdot \mathrm{~m}$ (two M4 Phillips screws) HS9Z-A51A/A52A: 1.0 to $1.5 \mathrm{~N} \cdot \mathrm{~m}$ (two M4 screws) HS9Z-A53: $\quad 4.5$ to $5.5 \mathrm{~N} \cdot \mathrm{~m}$ (two M6 screws) HS9Z-A55: $\quad 1.0$ to $1.5 \mathrm{~N} \cdot \mathrm{~m}$ (two M4 screws)
Note: The above recommended tightening torque of the mounting screws are the values with hex socket head bolts. When other screws are used and tightened to a smaller torque, make sure that the screws do not become loose after mounting.

Wire Identification

Wires can be identified by color and a white line printed on the wire.

- HS5E-V: Wires of gray and gray/white insulation cannot be used.
- HS5E-DD: Wires of brown and brown/white insulation cannot be used.

No.	Insulation	No.	Insulation	No.	Insulation	No.	Insulation
1	White	4	Blue	7	Blue/White	10	Pink/White
2	Black	5	Brown/White	8	Orange/White	11	Gray
3	Brown	6	Orange	9	Pink	12	Gray/White

Circuit Code Identification

- Circuit codes can be identified by the insulation color in each contact configuration.
- The following table shows the identification of circuit numbers.
- When wiring, cut unnecessary wires such as the dummy insulation (white) and any unused wires.

Type	Circuit Diagram
HS5E-KVA	
HS5E-KVD	Monitor Circuit: Blue

is locked.

Recommended Tightening Torque for Mounting Screws

- HS5E interlock switch: 1.8 to $2.2 \mathrm{~N} \cdot \mathrm{~m}$ (four M4 screws) (Note)
- Rear unlocking button: 0.5 to $0.7 \mathrm{~N} \cdot \mathrm{~m}$

ø22 HW Key Switch

Key features:

- Key Selector Switches with Direct Opening Action Mechanism
- High-security Pin Tumbler Key
- The NC contact is opened by direct opening action mechanism Θ. Mode selection enables easy construction of safety systems.
- The single key enables the hostage control of combining HW series key selector switch (pin tumbler type) and HS5E-K interlock key switch. High-security pin tumbler key is used. Sixteen types of key numbers are available.
- Selection of 2-position and 3-position, maintained, spring-return types and key retained variety is available.
- Degree of Protection: IP65 (IEC60529)

Applicable Standards	Mark	File No. or Organization
UL508	(LL) usteo	UL Listing File No. E68961
CSA C22.2 No.14	©f.	CSA166730 (LR92374)
EN60947-5-1	$\boldsymbol{\Delta}$	TÜV Rheinland R50054316
	C (Self-declaration Low Voltage Directive of Europe

Two-position Key Switch (90°)

 Contact Block Mounting Position

For contact block mounting position, see the figure to the right of the table. Each key selector switch is supplied with two keys.
Key number 500 is supplied as the default key in table above (500 not added to part number) To order additional key types, specify key number at end of part number (special order). Example: HS5E-KVA003-2A501

$$
501 \text { to } 515
$$

Note: The key number is engraved on the cylinder.

Three-position Key Switch (45 ${ }^{\circ}$)

On the contact arrangement marked with $\dot{\boldsymbol{\psi}}$ in the table above, the rated current (load switching current) is reduced to a half of the rated current of the contact block. The rated insulation voltage and the rated thermal current remain unchanged.
For models with $\hat{\psi}$, contacts may overlap when the operator position is changed.
For contact block mounting position, see the figure on the right.
Each key selector switch is supplied with two keys.
15 types of key numbers are available in addition to standard (500) key.
Key number 500 is supplied as the default key in table above (500 not added to part number).
To order additional key types, specify key number at end of part number (special order).
Example: HS5E-KVA003-2A501

$$
501 \text { to } 515
$$

Note: The key number is engraved on the cylinder.
Dimensions (mm)

Anti-rotation Ring and Panel cut-out
Align the TOP marking on the operator and the TOP mark on the anti-rotation ring with the recess in the mounting panel.

Replacement Parts

Accessories

Item	Material	Part No.	Dimensions
Padlock Cover	Body: Polyarylate Gasket: Nitrile Rubber	HW9Z-KL1	
Nameplate	Plastic (black) 1.5 mm thick	HWAM	Order marking plate (HWNP-■) separately.
Marking Plate	Aluminum (black) 1.0 mm thick	HWNP- \square	White letters on black background
OFF ON			
			31 OFF-ON
			35 HAND-AUTO
			53 HAND-OFF-AUTO

To install the marking plate on a nameplate, see Fig. 1.
To remove the marking plate, insert a flat screwdriver between the marking plate and nameplate as shown in Fig. 2.
When using a nameplate, mounting panel thickness is decreased by 1.5 mm .
When an anti-rotation ring on the nameplate is not required, remove the projection using pliers as shown in Fig. 2.

Operating Instructions

Applicable Wiring

1. The applicable wire size is 14 AWG maximum (Solid wire 16 AWG max.). One or two wires can be connected.
Applicable Crimping Terminal
Crimping Terminal for
(A)

Be sure to use an insulation tube or cover on the crimping part of the crimping terminal to prevent electrical shocks.

Solid Wire

2. Tighten the M3.5 terminal screw to a recommended tightening torque of 1.0 to $1.3 \mathrm{~N} \cdot \mathrm{~m}$.

Crimping Terminal for (B)

HS7A-DMC Magnetic Safety Switches

Key features:

- Compact size and easy positioning.
- Combination with proprietary relay modules achieves safety category 4 (EN954-1).
- Compact size ($7 \times 16 \times 51 \mathrm{~mm}$)
- Positioning for installation is easy.
- Up to 36 sets can be connected. (safety relay module: HR1S-DME)
- Degree of protection: IP67

Part Numbers

HS7A Non-contact Magnetic Interlock Switches

Contact Configuration	Cable Length	LED	Part Number	Applicable Safety Relay Module
$1 \mathrm{NO}+1 \mathrm{NC}$	2 m	Without	HS7A-DMC5902	HR1S-D \square
		With	HS7A-DMC5912	
	5 m	Without	HS7A-DMC5905	
		With	HS7A-DMC5915	
	10m	Without	HS7A-DMC59010	
		With	HS7A-DMC59110	
2NO	2 m	Without	HS7A-DMC7902	HR1S-AF \square
		With	HS7A-DMC7912	
	5 m	Without	HS7A-DMC7905	
		With	HS7A-DMC7915	
	10m	Without	HS7A-DMC79010	
		With	HS7A-DMC79110	

The HS7A-DMC non-contact interlock switch is supplied with an HS9Z-ZC1 actuator.
The contact configuration in the table above shows the contact status when the non-contact interlock switch is not activated.

HR1S Safety Relay Modules for Non-contact Interlock Switches

Safety Relay Module	Voltage	Number of Inputs	Max. Number of Connectable Non-contact Interlock Switches
HR1S-DMB $\square 32$	24V DC -20 to +20\%	2	12
HR1S-DME $\square 32$		6	36
HR1S-AF $\square 30 \mathrm{~B}$	$\begin{aligned} & 24 \mathrm{~V} \text { AC }-15 \text { to }+10 \% 50 / 60 \mathrm{~Hz} \\ & 24 \mathrm{~V} \text { DC }-15 \text { to }+10 \% \end{aligned}$	1	6

Safety category 3 can be achieved when connecting two or more non-contact interlock switches per one input. When connecting multiple non-contact interlock switches (HS7A-DMC790 \square), use HR1S-AF51 \square.
(HS7A-DMC791 \square cannot be connected in multiple numbers.)

Specifications		
Applicable Standards		IEC/EN 60947-5-1 UL508 (UL listed) CSA C22.2, No. 14
Operating Temperature		-25 to $85^{\circ} \mathrm{C}$ (no freezing)
Relative Humidity		30 to 85\% RH (no condensation)
Storage Temperature		-40 to $+85^{\circ} \mathrm{C}$ (no freezing)
Pollution Degree		3
Electric Shock Protection		Class II (IEC 60536)
Degree of Protection		IP67 (IEC 60529)
Shock Resistance		$300 \mathrm{~m} / \mathrm{s}^{2}(11 \mathrm{~ms})$ (IEC 60068-2-7)
Vibration Resistance		$100 \mathrm{~m} / \mathrm{s}^{2}(10$ to 150 Hz) (IEC 60068-2-6)
Rated Voltage (Ue)		24 V DC
Rated Current (le)		100 mA
Repeat Accuracy		10\% maximum
Maximum Operating Frequency		150 Hz
Voltage Drop	$\mathrm{I}=10 \mathrm{~mA}$	0.1 V (without LED) / 2.4 V (with LED)
	$\mathrm{I}=100 \mathrm{~mA}$	1V (without LED) / 4.2V (with LED)
Housing Material		PBT
Housing Color		Red
Cable		AWG23 $\times 4$ Cable length: $2 \mathrm{~m}, 5 \mathrm{~m}, 10 \mathrm{~m}$
Weight (approx.)		HS7A-DMC: $\quad 100 \mathrm{~g}$ (cable length: 2 m) HS9Z-ZC1: 9 g

Dimensions (mm)

HS7A-DMC

(Non-contact Interlock Switch)

HS9Z-ZC1 (Actuator)

Example Wiring Diagram

Example: Safety Category 4 (ISO 13849-1) Circuit, HR1S-DMB + HS7A-DMC591 \square (1NO+1NC) + HS9Z-ZC1 +24 V F1 (protection fuse for the power of safety relay module)

Example: Safety Category 4 (EN 13849-1) Circuit, HR1S-DME + HS7A-DMC591 \square (1N0+1NC) + HS9Z-ZC1
$+24 \mathrm{~V} \quad$ F1 (protection fuse for the power of safety relay module)

Short-circuit unused input terminals.

${ }_{521}$	s_{22}	s_{23}

Example: Safety Category 4 (EN 13849-1) Circuit, HR1S-DME + HS7A-DMC591 \square (1NO+1NC) + HS9Z-ZC1

Note: The circuit example shown on the left (HR1S-AF and HS7A-DMC79 $\square \square$ may not conform to safety category 4 depending on the operating conditions, such as the frequency of safety function check. Perform risk assessment of your system before operation.
Operating Instructions

Operating Direction

Safety output ON distance (SAO): 3 mm .

Precautions for Installation

When installing on a ferromagnet

Tightening Torque

Close mounting

HS7A-DMC59 \square (1NO+1NC)

Contact Status

	Contact Closed (1)
	Contact Open (0)
	Transient State

Operation Area

Sao: Assured operating distance where the safety output is sure to turn on
Sar: Assured release distance where the safety output is sure to turn off.

Note: When the transfer time between the actuator's Sao-Sar is 500 ms or longer, the time lag is detected as an error.

HS7A-DMC79 \square (2NO)

HS7A-DMP Magnetic Safety Switches

Key features:

- Three-contact models. Auxiliary contacts enable PLCs to monitor the door status.
- Operation signals from auxiliary contacts can be read directly by controllers such as PLCs, allowing for monitoring HS7A-DMP non-contact interlock switches.
- Ideal for installation on guard doors where positioning is difficult.
- Conformable up to safety category 4 (EN ISO 13849-1) (Combining with proprietary safety relay module achieves safety category 4.)
- A maximum of 36 sets can be connected (safety relay module: HR1S-DME)
- Degree of protection: IP67

(나) (H) C

The HS7A-DMP non-contact interlock switches can be used as interlock switches when used in combination with safety relay modules specified by IDEC.

Part Numbers

HS7A Non-contact Interlock Switches

Contact Configuration	Cable Length	LED	Ordering Type No.	Applicable Safety Relay Module
1NO+2NC	2 m	Without	HS7A-DMP5002	HR1S-D \square
		With	HS7A-DMP5012	
	5 m	Without	HS7A-DMP5005	
		With	HS7A-DMP5015	
2NO+1NC	2 m	Without	HS7A-DMP7002	HR1S-AF \square
		With	HS7A-DMP7012	
	5 m	Without	HS7A-DMP7005	
		With	HS7A-DMP7015	

The HS7A-DMP non-contact interlock switch is supplied with an HS9Z-ZP1 actuator.
The contact configuration in the table above shows the contact status when the non-contact interlock switch is not activated.

HR1S Safety Relay Modules for Non-contact Interlock Switches

Safety Relay Module	Number of Inputs	Max. Number of Connectable Non-contact Interlock Switches
HR1S-DMB \square	2	12
HR1S-DME \square	6	36
HR1S-AF \square	1	6

When connecting multiple non-contact interlock switches (HS7A-DMP700 \square), use HR1S-AF \square. (HS7A-DMP701 \square cannot be connected in multiple numbers.)

Specifications			
Applicable Standards		IEC/EN 60947-5-1 UL508 (UL listed) CSA C22.2, No. 14	
Operating Temperature		-25 to $85^{\circ} \mathrm{C}$ (no freezing)	
Relative Humidity		35 to 85\% RH (no condensation)	
Storage Temperature		-40 to $+85^{\circ} \mathrm{C}$ (no freezing)	
Pollution Degree		3	
Electric Shock Protection		Class II (IEC 60536)	
Degree of Protection		IP67 (IEC 60529)	
Shock Resistance		$300 \mathrm{~m} / \mathrm{s}^{2}(11 \mathrm{~ms})$ (IEC 60068-2-7)	
Vibration Resistance		$100 \mathrm{~m} / \mathrm{s}^{2}(10$ to 150 Hz) (IEC 60068-2-6)	
Rated Voltage (Ue)		24 V DC	
Rated Current (le)		100 mA	
Repeat Accuracy		10\% maximum	
Maximum Operating Frequency		150 Hz	
Voltage Drop	$\mathrm{I}=10 \mathrm{~mA}$	0.1 V (without LED) / 2.4 V (with LED)	
	$\mathrm{I}=100 \mathrm{~mA}$	1V (without LED) / 4.2V (with LED)	
Electrical Durability		1,200,000 operations minimum	
Housing Material		PBT	
Housing Color		Red	
Cable		$\text { AWG } 23 \times 6$ Cable length: $2 \mathrm{~m}, 5 \mathrm{~m}$	
Weight (approx.)		$\begin{aligned} & \text { HS7A-DMP: } \\ & \text { HS9Z-ZP1: } \end{aligned}$	180 g (cable length: 2 m) $50 \mathrm{~g}$

Dimensions (mm)
HS7A-DMP $\square \square \square$
(Non-contact
Interlock Switch)

Example Wiring Diagram

The following diagrams show the contact statuses when the non-contact interlock switches are activated by the actuators.

Example: Safety Category 4 (ISO 13849-1) Circuit
HR1S-DMB + HS7A-DMP50 $\square \square$ (1NO +2NC) + HS9Z-ZP1

AS-Interface Safety at Work \mid Light Curtains

Example: Safety Category 4 (ISO 13849-1) Circuit
HR1S-DME + HS7A-DMP50 \square (1NO+2NC) + HS9Z-ZP1

Example: Safety Category 4 (ISO 13849-1) Circuit HR1S-AF + HS7A-DMP70 \square (2NO+1NC) + HS9Z-ZP1

Example: Safety Category 3 (EN ISO 13849-1) Circuit HR1S-DMB

Example: Safety Category 3 (ISO 13849-1) Circuit HR1S-DME

F1: Protection fuse for the power of safety relay module
F: Protection fuse for monitor signal contacts (max. $500 \mathrm{~mA} \mathrm{gG}(\mathrm{gL})$)

Note: The circuit example shown on the left (HR1S-AF and HS7A-DMP70 $\square \square$) may not conform to safety category 4 depending on the operating conditions, such as the frequency of safety function check. Perform risk assessment of your system before operation.

Operating Direction

Safety output ON distance (SAO): 3 mm .

Precautions for Installation

When installing on a ferromagnet

Key features:

- RFID non-contact interlock switch, Category 4 and PLe (EN/ISO 13849-1) compliant.
- The sensor head with built-in safety function (redundant solid state output with internal monitoring) eliminates the need for a designated safety module.
- RFID ensures detection of slow-moving, open, sliding, and rattling doors.
- Multicode and unicode sensor heads are available. Unicode sensor head (one sensor head corresponds to one actuator) prevents tampering with the use of an unassigned spare actuator.
- Sensor head can be installed in 5 directions.
- Degree of protection IP67. Actuator IP67, IP69K (Note)

Note: IP69K is a degree of protection specified by Deutsches Institüt für Normung (DIN), DW 40050 Part 9 for hot and high-pressure water.

Interlock Switch (Sensor Head)

Actuator

Part Numbers

HS3A Non-contact RFID Safety Switches

Outputs	Type	Part Number
Safety output: 2	Multicode	HS3A-H21M4
Monitor output: 1	Unicode	HS3A-H21U4

Accessories

[^4]HS3A non-contact interlock switch (HS3Z-H21 $\square 4$): N pcs. Y-branch connector (HS9Z-H3YD): N pcs.
Actuator (HS9Z-ZH31): N pcs.
M12 plug connection cable, open end (HS9Z-H3F5 $\square \square$): 1 pc.
Terminal plug (HS9Z-H3TP): 1 pc.
M12 plug connection cable, plug connectors at both ends (HS9Z-H3F5M $\square \square$): $\mathrm{N}-1$ pcs.

Specifications		
Applicable Standards		EN60947-5-3 (IFA approval) EN954-1 EN ISO13849-1 EN62061 GS-ET-14 (IFA approval) UL508 (UL listed) CSA C22.2 No. 14 (c-UL listed)
Operating Temperature		-20 to $+55^{\circ} \mathrm{C}$ (no freezing)
Relative Humidity		5 to 80\% (no condensation)
Storage Temperature		-25 to $+70^{\circ} \mathrm{C}$
Pollution Degree		3
Sensor Classification		PDF-M (EN60947-5-3)
Performance Level (PL)		e (EN ISO 13849-1)
Safety Category		4 (EN ISO 13849-1)
Safety Integrity Level (SIL)		3 (EN 62061)
Degree of Protection	Interlock Switch (sensor head)	IP67
	Actuator	IP67, IP69K (Note)
Rated Voltage (UB)		24 V DC $\pm 15 \%$
Current Consumption		80 mA (at no load)
Dielectric Strength		500 V AC
Output Specifications	Safety Output	Semiconductor output, P-channel Output voltage: Max: UB [V], Min.: UB-1.5 [V] Maximum output current per safety output: 400 mA
	Monitor Output	Semiconductor output, P-channel Output voltage: Max: UB [V], Min.: $0.8 \times$ UB [V] Maximum output current: 200 mA
Operation Distance	Turn-on Distance	15mm (typ.)
	Assured Turn-on Distance (Sao)	13mm
	Maximum Turn-off Distance (Sar)	58 mm
Response Time	When using a single switch	260 ms (actuator removed)
		150 ms (non-identical input signal at IA/IB)
		150 ms (non-identical enabling input state at IA/IB)
		300 ms (short-circuit or cross-circuit at OA/OB, or internal error)
	When using two or more switches (max.)	360 ms (actuator removed)
		250 ms (non-identical input signal at IA/IB)
		400 ms (non-identical enabling input state at IA/IB)
		400 ms (short-circuit or cross-circuit at OA/OB, or internal error)
Shock Resistance		Operating extremes: $300 \mathrm{~m} / \mathrm{s}^{2}$ (11 ms)
Vibration Resistance		10 to 55 Hz , amplitude 0.5 mm
Material		PBT
Cable		M12 plug connection cable, 8-pin
Weight (approx.)		400g (HS3A-H21 $\square \square)$
Attachment		System Manual (CD-ROM)

Dimensions (mm) Sensor Head

Actuator

Terminal Plug
HS9Z-H3TP

Specifications

Non-contact Interlock Switch

Plug Connection Cable

HS9Z-H3FB
Pin Wire Legend Description 1 White IB Enabling input (channel 2) 2 Brown UB Power supply (24V DC) 3 Green OA Safety output (channel 1) 4 Yellow OB Safety output (channel 2) 5 Gray OUT Monitoring output 6 Pink IA Enabling input (channel 1) 7 Blue OV OV 8 Red RST Reset input for hardware

HS9Z-H3FS

Pin	Wire	Legend
1	Brown	UB
2	White	OA
3	Blue	OV
4	Black	OB
5	Gray	RST

Wiring Diagram

When using a single HS3A

When using a single HS3A, connect as shown in the figure below (Note). The OUT output can be connected to a control system, to a PLC for example, as a monitoring output.
The HS3A can be reset via the RST input. To reset, apply 24V DC for at least 3 seconds. When not using the RST input, connect the RST input to OV.

Note: The time required for the safety output to turn off after the actuator moves outside the operating distance of the HS3A switch.

When using two or more HS3A in series

A maximum of 20 can be connected in series.
Pay attention to the contact resistance at the connection points.
The HS3A switches can be connected in series using plug connection cables and Y-branch connectors as shown in the figure below (Note). When any of the HS3A switches detects that the safety guard is open, or when a failure has occurred on any of the switches, the system tuns off the machine. However, the external control system cannot detect which safety guard is open or where a failure has occurred.

The HS3A can be reset via the RST input. To reset, apply 24V DC for at least 3 seconds. When not using the RST input, connect the RST input to OV .

Safety Output Response Time

Operation Distance and Response Time

When installing the HS3A, ensure the safety of the door opening area by paying attention to the operation distance (Table 1) and response time (Table 2) shown below.

Table 1: Operation Distance ${ }^{1}$

Distance	Value (mm)		
	Min.	Typ.	Max.
Turn-on distance	-	15^{2}	-
Assured turn-on distance Sa0	13	-	-
Switching hysteresis	1.5	2.5	-
Assured turn-off distance Sar	-	-	58

1. When the off-center displacement of the interlock switch (sensor head) and actuator is 0 mm .
2. When surface-mounted on aluminum. When using by embedding in metal, pay attention to the operation distance affected by the metal. In non-metallic environment, the typical turn-on distance increases to 30 mm .

Table 2: Response Time

	When connecting a single switch (max.)	260 ms (actuator removed)
		150 ms (missing enabling input IA/IB)
		150 ms (non-identical enabling input state at IA/IB)
		300 ms (short-circuit or cross-circuit at OA/OB, or internal fault)
	When connecting two or more switches (max.)	360 ms (actuator removed)
		250 ms (missing signal enabling input IA/IB)
		400 ms (non-identical enabling input state at IA/IB)
		400 ms (short-circuit or cross circuit at OA/OB or internal fault)

Note: To ensure safety, both safety outputs (OA and OB) must always be evaluated. Singlechannel use of the safety outputs as shown below leads to a reduction of safety category stipulated in EN954-1.

Key features:

- Easy and secure operation
- Rattling doors can be locked smoothly and securely.
- A door can be locked with an actuator by pushing and turning the handle.
- Padlock tab is provided to ensure operator safety.
- Interlock switch with or without solenoid lock can be installed.
- LED shows solenoid status (when using HS5E- $\square 44 \mathrm{~L} \square \square$-G).

Part Numbers

Description		Ordering Type No.		Remarks	
Handle Unit	For right-hand door	HS9Z-DH5RH	Choose according to the required opening side.		
	For left-hand door	HS9Z-DH5LH	Used for installing the interlock switch inside.		
Switch Cover Unit	HS9Z-DH5C	Contains a mounting plate and two spacers.			
HS5B Installation Kit	HS9Z-DH5B	Contains a button with base plate	Mounting panel thickness (X): $20 \leq X \leq 30 \mathrm{~mm}{ }^{2}$		
Rear Unlocking Button Kit ${ }^{1}$	HS9Z-FL54	and a connecting rod	Mounting panel thickness (X): $30 \leq X \leq 40 \mathrm{~mm}{ }^{2}$		

1. Use the kit in combination with the HS5E- $\square 44 L \square \square-G$ rear unlocking button type interlock switch. 2. Mounting panel is a frame or a panel.

Parts Description

Front View

Rear View

Specifications

Applicable Interlock Switch	HS5B Metal Head Interlock Switch ${ }^{1}$ HS5E Rear Unlocking Button Type Interlock Switch with Solenoid ${ }^{2}$
Operating Temperature	-25 to $+70^{\circ} \mathrm{C}$ (no freezing)
Mechanical Durability	100,000 operations minimum
Applicable Shackle Diameter of Padlock	$ø 6$ to 7.5 mm
Withstand Load of Padlock Tab	30 N maximum
Handle Operation Angle	77° (removed position \longleftrightarrow inserted position)
Insulation Resistance (500V DC megger)	Between live and dead metal parts: $100 \mathrm{M} \Omega$ minimum Between terminals of different poles: $100 \mathrm{M} \Omega$ minimum..

1. HS5B- $\square \square Z B$, HS5B- $\square \square Z B M$
2. HS5E- $\square 44 \mathrm{~L} \square \square-\mathrm{G}$

Interlock switch is not supplied with the actuator and must be ordered separately.
For the specifications of interlock switches, see pages XX $X X$, and $X X$.

Rotational handle actuator can be inserted/removed smoothly on rattling doors.

Conventional Sliding Actuator

IDEC's Door Handle Actuator
Rattling doors can be locked smoothly and securely.

The door can be locked and unlocked by pushing and turning the handle.

The actuator can be inserted into the interlock switch by pushing and turning the front handle. The actuator can be removed from the interlock switch by turning the front handle.

Because the handle can be turned only while it is pushed, the actuator is prevented from hitting the switch cover unit.

The rear handle can remove the actuator, but cannot insert the actuator.

Padlockable tab ensures operator's safety.

When padlocks are installed on the padlock tab, the machine cannot be started because the actuator entry slot is blocked and the actuator cannot enter the interlock switch. By requiring all operators to have their own padlock and installing them on the door handle actuator before entering the hazardous area, the door will not be closed unless all padlocks are removed-i.e. all operators have left the hazardous area. Note: Operators must observe rules in the workplace in order to ensure safety. Residual risk such as failure to install padlocks must be taken into consideration.

Interlock switch

Interlock Switches

HS5B- $\square \square Z$
Metal Head Type

Switch Cover Unit

Selection Chart

Accessories
Rear Unlocking
Button Kit

HS9Z-FL53 HS9Z-FL54

HS5B Installation Kit

HS9Z-DH5B

Dimensions (mm)
HS9Z-DH5RH (right-hand door) and HS5E- $\square 44 \mathrm{~L} \square \square$-G Interlock Switch with Solenoid

Legend	Description
1	Right-hand Door Handle Unit HS9Z-DH5RH
2	Switch Cover Unit HS9Z-DH5C
3	Rear Unlocking Button Kit HS9Z-FL5 \square
4	Interlock Switch HS5E- $\square 44$ L $\square \square-G$

HS9Z-DH5LH (left-hand door) and HS5E- $\square 44 L \square \square$-G Interlock Switch with Solenoid

Legend	Description
1	Left-hand Door Handle Unit HS9Z-DH5LH
2	Switch Cover Unit HS9Z-DH5C
3	Rear Unlocking Button Kit HS9Z-FL5 \square
4	Interlock Switch HS5E-- $\square 44$ LD-G-G

Mounting Panel Thickness:
20 to 40

HS9Z-DH5RH (right-hand door) and HS5B- $\square \square \mathrm{Z}$ Interlock Switch

HS9Z-DH5LH (left-hand door) and HS5B- $\square \square$ Z Interlock Switch

Panel Cut-out
HS9Z-DH5RH right-hand door handle unit

When using the HS5E- $\square 44 \mathrm{~L} \square \square-\mathrm{G}$ on the mounting panel of 3 mm or less in thickness (use the rear unlocking button).
(mounting panel thickness $X \leq 70 \mathrm{~mm}$).

When using the HS5E- $\square 44 L \square \square$-G on the mounting panel of 20 to 40 mm in thickness.

- Use the rear unlocking button kit (HS9Z-FL5 \square).
- In the figure shown on the right, $\square 40 \mathrm{~mm}$ frame is used.

HS9Z-DH5LH left-hand door handle unit

When using the HS5E- $\square 44 \mathrm{~L} \square \square-\mathrm{G}$ on the mounting panel of 3 mm or less in thickness (use the rear unlocking button).
When using the HS5B- $\square Z$
(mounting panel thickness $X \leq 70 \mathrm{~mm}$).

When using the HS5E- $\square 44 L \square \square-G$ on the mounting panel of 20 to 40 mm in thickness.

- Use the rear unlocking button kit (HS9Z-FL5 \square).
- In the figure shown on the right, $\square 40 \mathrm{~mm}$ frame is used.

Mounting Position Tolerance

Note 1: Required when using the
HS5E- $\square 44 \mathrm{~L}-\square \square$-G.
Not required when using the HS5B- $\square \square Z$ (without locking function).
Note 2: Ensure that the hole in the mounting panel does not interfere with the rear handle shaft.

Rear Unlocking Button Kit

(HS9Z-FL53/HS9Z-FL54) (Use with the HS5E-*44L**-G Interlock Switch)

HS5B Installation Kit (HS9Z-DH5B)

Note: The illustration kit contains the aluminum mounting plate shown above and two spacers.

For more information, download instruction sheet from web.

[^0]: stop from the interlock switch.

[^1]: Actuators are not included and must be ordered separately.

[^2]: 1. Main Circuit: used to enable the machine to start only when the main circuit is closed. Auxiliary Circuit: used to indicate whether the main circuit or door is open or closed.
 2. Terminals + and - are used for the LED indicator, and are isolated from door status. Wire the terminals only when needed.
[^3]: 1. Contact configuration shows the contact status when actuator is inserted and solenoid off for spring lock.
[^4]: See below for an example of accessories required when connecting N number of HS3A switches in series.

